Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Дифференциалы - это что такое? Как найти дифференциал функции.

Дифференциалы - это что такое? Как найти дифференциал функции.

Если функция дифференцируема в точке, то её приращение можно представить в виде суммы двух слагаемых

. Эти слагаемые являются бесконечно малыми функциями при
.Первое слагаемое линейно относительно
,второе является бесконечно малой более высокого порядка, чем
.Действительно,

.

Таким образом второе слагаемое при
быстрее стремится к нулю и при нахождении приращения функции
главную роль играет первое слагаемое
или (так как
)
.

Определение . Главная часть приращения функции
в точке , линейная относительно
,называется дифференциалом функции в этой точке и обозначается dy или df (x )

. (2)

Таким образом, можно сделать вывод: дифференциал независимой переменной совпадает с её приращением, то есть
.

Соотношение (2) теперь принимает вид

(3)

Замечание . Формулу (3) для краткости часто записывают в виде

(4)

Геометрический смысл дифференциала

Рассмотрим график дифференцируемой функции
. Точки
ипринадлежат графику функции. В точкеМ проведена касательная К к графику функции, угол которой с положительным направлением оси
обозначим через
. Проведем прямыеMN параллельно оси Ox и
параллельно осиOy . Приращение функции равно длине отрезка
. Из прямоугольного треугольника
, в котором
, получим

Изложенные выше рассуждения позволяют сделать вывод:

Дифференциал функции
в точке изображается приращением ординаты касательной к графику этой функции в соответствующей её точке
.

Связь дифференциала с производной

Рассмотрим формулу (4)

.

Разделим обе части этого равенства на dx , тогда

.

Таким образом, производная функции равна отношению её дифференциала к дифференциалу независимой переменной .

Часто это отношение рассматривается просто как символ, обозначающий производную функцииу по аргументу х .

Удобными обозначениями производной также являются:

,
и так далее.

Употребляются также записи

,
,

особенно удобные, когда берется производная от сложного выражения.

2. Дифференциал суммы, произведения и частного.

Так как дифференциал получается из производной умножением её на дифференциал независимой переменной, то, зная производные основных элементарных функций, а также правила для отыскания производных, можно прийти к аналогичным правилам для отыскания дифференциалов.

1 0 . Дифференциал постоянной равен нулю

.

2 0 . Дифференциал алгебраической суммы конечного числа дифференцируемых функций равен алгебраической сумме дифференциалов этих функций

3 0 . Дифференциал произведения двух дифференцируемых функций равен сумме произведений первой функции на дифференциал второй и второй функции на дифференциал первой

.

Следствие . Постоянный множитель можно выносить за знак дифференциала

.

Пример . Найти дифференциал функции .

Решение.Запишем данную функцию в виде

,

тогда получим

.

4. Функции, заданные параметрически, их дифференцирование.

Определение . Функция
называется заданной параметрически, если обе переменныех и у определяются каждая в отдельности как однозначные функции от одной и той же вспомогательной переменной – параметра t :


где t изменяется в пределах
.

Замечание . Параметрическое задание функций широко применяется в теоретической механике, где параметр t обозначает время, а уравнения
представляют собой законы изменения проекций движущейся точки
на оси
и
.

Замечание . Приведем параметрические уравнения окружности и эллипса.

а) Окружность с центром в начале координат и радиусом r имеет параметрические уравнения:

где
.

б) Запишем параметрические уравнения для эллипса:

где
.

Исключив параметр t из параметрических уравнений рассматриваемых линий, можно прийти к их каноническим уравнениям.

Теорема . Если функция у от аргумента х задана параметрически уравнениями
, где
и
дифференцируемые по
t функции и
, то

.

Пример . Найти производную функции у от х , заданной параметрическими уравнениями.

Решение.
.

Переобзовем приращение независимой переменной х дифференциалом этой переменной, обозначив его как dx, то есть для независимой переменной по определению будем считать

Назовём дифференциалом функции у=f(х) выражение

Обозначив его символом dy или df (х) по определению будем иметь

Последняя формула называется «формой» «первого» дифференциала. Забегая вперед приведём и объясним «архиважнейшее» свойство дифференциала - так называемую инвариантность (неизменность) его формы. Итак

Форма дифференциала не зависит(инвариантна) от того, является лих независимой переменной, или же этах - зависимая переменная - функция.

Действительно, пусть
, то есть у - сложная функция «от t» По определению дифференциала имеем
. Но

,

то есть опять имеет ту же форму.

Однако «суть» (а не форма) дифференциала в этих двух случаях разная. Чтобы это объяснить выясним сначала геометрический смысл дифференциала и некоторые другие его свойства. Из приведенного ниже рисунка видно, что дифференциал является частью приращения ∆у. Можно показать, что dy, есть главная и линейная часть ∆у. Главная в том смысле, что разность ∆у – dy есть величина бесконечно малая высшего, что ∆х порядка малости, а линейная в смысле линейности своей зависимости от ∆х.

Можно сказать также, что дифференциал есть (смотри рисунок) соответствующее приращение ординаты касательной. Теперь объяснима и разница в сути и значении дифференциальной формы при независимом и зависимом аргументе. В первом случае dx есть все приращение ∆х. С помощью определения легко доказываются и

Арифметические свойства дифференциала


Определим теперь

Производные и дифференциалы высших порядков.

По определению
- вторая производная;
- третья производная и вообще
- n – ая производна функции
.

Точно также по определению

; - второй дифференциал;
- третий дифференциал и вообще - n – ый дифференциал функции
. Можно

показать, что

Приложения производных к исследованию функций.

В

ажнейшей теоремой, на которой базируется почти все методы исследования функций, являетсятеорема Лангранжа: Если функция f (ч) непрерывна на отрезке (а, b) и дифференцируема во всех внутренних его точках, то найдется такая точка, что

Геометрически (рис. 6) теорема утверждает, что на соответствующем интервала
найдется точкатакая, что угловой коэффициент касательной к графику в точке
равен угловому коэффициенту секущей, проходящей через точки
и
.

Другими словами, для «куска» графика описанной в теореме функции, найдется касательная, параллельная секущей, которая проходит через граничные точки этого куска. Из этой теоремы в частности следует замечательное правило раскрытия неопределенностей типа -так называемой правило маркиза Лопиталя : Если функции f(x ) и g(x) дифференцируемы в точке а и некоторой её окрестности f(а) = g(а) = 0, а f"(а) и g"(а) не равны нулю одновременно то
.

Замечания: Можно показать, что 1. Правило применимо и для раскрытия неопределенности типа ; 2. Еслиf"(а) = g"(а) = 0 или ∞, а f""(а) и g""(а) существует и не равны нулю одновременно, то
.

Спомощью теоремы Лангранжа можно доказать и достачныц признак монотонности функции:

Если
на интервале (а, b) то
f(x ) возрастает (убывает) на этом интервале.

Следует отметить, что знако постоянство производной является и необходимым признаком монотонности. А уже из этих признаков можно вывести:

а) необходимый признак существования экстремума

Для того чтобы точка х 0 была точкой максимума (минимума), необходимо, чтобы f"(x 0 ) либо была равна нулю, либо не существовала. Такие точки х 0 , в которых f"(x 0 ) = 0 или не существуют называют критическими.

б) достаточный признак существования экстремума:

Если (см. рис.) при переходе через критическую точку х 0 производная f"(x ) функции меняет знак, то эта точка - точка экстремума. Если, при этом, f"(x ) меняет знак с «+» на «- « , то х 0 - точка максимума, а если с «-« на «+», то точка х 0 - точка минимума.

И наконец, приведем еще один признак, использующий понятие производной. Это

Достаточный признак выпуклости (вогнутости) графику функции «над» интервалом (а, b).

Если на интервале (а, b) производная f""(x )>0 то график f(x ) вогнут, а если f""(x )< 0, то график является выпуклым «над» этим интервалом.

Полная схема исследования функции может теперь выглядеть следующим образом:

Схема полного исследования функции

    Область определения интервала знакопостоянства.

    Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

    Возникновение понятия о дифференциале

    Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

    Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

    В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы - это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y"(x) Δх + αΔх, где α Δх - остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

    Согласно основоположникам матанализа, дифференциалы - это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 - Δу/Δх→ y"(x).

    В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y"(x)dx, аргумента dx и производной функции в виде их отношения y"(x) = dy/dx.

    Современное определение

    Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y 1 , а затем y = y 2 , то разность y 2 ─ y 1 называется приращением величины y.

    Приращение может быть положительным. отрицательным и равным нулю. Слово «приращение» обозначается Δ, запись Δу (читается «дельта игрек») обозначает приращение величины y. так что Δу = y 2 ─ y 1 .

    Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемымdy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы - это «главные» линейные относительно Δх составляющие приращений функций.

    Механическое истолкование

    Пусть s = f (t) - расстояние прямолинейно движущейся от начального положения (t - время пребывания в пути). Приращение Δs - это путь точки за интервал времени Δt, а дифференциал ds = f" (t) Δt - это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f"(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

    Геометрическая интерпретация

    Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM" (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM". Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f "(x), т. е QN есть дифференциал dy.

    Вторая часть NM"дает разность Δу ─ dy, при Δх→0 длина NM" уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f "(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM"и QN эквивалентны; иными словами NM" уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM". Это видно на рисунке (с приближением M"к М отрезок NM"составляет все меньший процент отрезка QM").

    Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

    Производная и дифференциал

    Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f "(x). Таким образом, имеет место следующее соотношение - dy = f "(x)Δх, или же df (x) = f "(x)Δх.

    Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f "(x) dx = dy.

    Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

    Что более универсально: приращение аргумента или его дифференциал

    Здесь необходимо сделать некоторые пояснения. Представление величиной f "(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f "(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

    Что же касается формулы f "(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

    Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

    Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

    Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

    Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

    Замена приращений дифференциалами

    Если f "(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f "(x) = 0 (что означает и dy = 0), они не эквивалентны.

    Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

    Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

    Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

    Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

    Дифференциал функции: примеры

    Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

    Δу = (Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3).

    Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

    dy=3x 2 Δх=3x 2 dx или же d(x 3) = 3x 2 dx.

    При этом d(x 3) / dx = 3x 2 .

    Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

    Дифференциалы основных алгебраических функций приведены ниже.

    Приближенные вычисления с применением дифференциала

    Вычислить функцию f (x), а также ее производную f "(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

    f(a + Δх) ≈ f "(a)Δх + f(a).

    Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f "(a)Δх.

    Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

    Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

    f(a+ Δх) ≈ f "(ξ) Δх + f(a),

    где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

    Оценка погрешности формул при помощи применения дифференциала

    В принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной или, короче, предельной погрешностью - положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной называют частное от ее деления на абсолютное значение измеренной величины.

    Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

    │‌‌Δу│≈│‌‌dy│=│ f "(x)││Δх│,

    где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

    Можно доказать, что если функция имеет при некоторой базе предел, равный конечному числу, то ее можно представить в виде суммы этого числа и бесконечно малой величины при той же базе (и наоборот): .

    Применим это теорему к дифференцируемой функции: .

    Таким образом, приращение функции у состоит из двух слагаемых: 1) линейного относительнох, т.е.f`(x)х; 2) нелинейного относительнох, т.е.(x)х. При этом, так как
    , это второе слагаемое представляет собой бесконечно малую более высокого порядка, чемх (при стремлениих к нулю оно стремится к нулю еще быстрее).

    Дифференциалом функции называется главная, линейная относительнох часть приращения функции, равная произведению производной на приращение независимой переменнойdy=f`(x)х.

    Найдем дифференциал функции у = х.

    Так как dy=f`(x)х =x`х =х, тоdx=х, т.е. дифференциал независимой переменной равен приращению этой переменной.

    Поэтому формулу для дифференциала функции можно записать в виде dy=f`(x)dх. Именно поэтому одно из обозначений производной представляет собой дробьdy/dх.

    Геометрический смысл дифференциала проиллюстрирован рисунком 3.11. Возьмем на графике функции y = f(x) произвольную точку М(х, у). Дадим аргументу х приращение х. Тогда функция y = f(x) получит приращениеy = f(x +х) - f(x). Проведем касательную к графику функции в точке М, которая образует уголс положительным направлением оси абсцисс, т.е.f`(x) = tg. Из прямоугольного треугольника MKNKN=MN*tg=х*tg=f`(x)х =dy.

    Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции в данной точке, когда х получает приращение х.

    Свойства дифференциала в основном аналогичны свойствам производной:

    3. d(u ± v) = du ± dv.

    4. d(uv) = v du + u dv.

    5. d(u/v) = (v du - u dv)/v 2 .

    Однако, существует важное свойство дифференциала функции, которым не обладает ее производная – это инвариантность формы дифференциала .

    Из определения дифференциала для функции y= f(x) дифференциалdy=f`(x)dх. Если эта функцияyявляется сложной, т.е.y= f(u), гдеu=(х), тоy= f[(х)] иf`(x) = f `(u)*u`. Тогдаdy= f `(u)*u`dх. Но для функцииu=(х) дифференциалdu=u`dх. Отсюдаdy= f `(u)*du.

    Сравнивая между собой равенства dy=f`(x)dх иdy= f `(u)*du, убедимся, что формула дифференциала не изменяется, если вместо функции от независимой переменной х рассматривать функцию от зависимой переменнойu. Это свойство дифференциала и получило название инвариантности (т.е. неизменности) формы (или формулы) дифференциала.

    Однако в этих двух формулах все же есть различие: в первой из них дифференциал независимой переменной равен приращению этой переменной, т.е. dx = x, а во в торой дифференциал функции du есть лишь линейная часть приращения этой функцииuи только при малыхх duu.

    Применение дифференциала в приближенных вычислениях

    Выше было показано, что , т.е. приращение функцииу отличается от ее дифференциала dy на бесконечно малую величину более высокого порядка, чемх.

    Поэтому при достаточно малых значениях хуdy или f(x +х) - f(x)f`(x)х, откуда f(x +х)f(x) +f`(x)х. Полученная формула будет тем точнее, чем меньшех.

    Например, найдем

    Итак, y=f(x) =x 1/3 . Возьмемx= 125,х = 0,27.

    f`(x) = (x 1/3)`= 1/(3x 2/3)

    f(125,27) =f(125 + 0,27)f(125) +f`(125)*(0,27) =
    = 5 + 0,27/(3*25) = 5,0036

    Например, найдем tg 46 о.

    Итак, y=f(x) =tgx. Возьмемx= 45 o =/4,х = 1 o =/180.

    f`(x) = (tgx)`= 1/cos 2 x

    f(46 o) = f(/4 + /180)  f(/4) + f `(/4)*(/180) = tg(/4) + + (1/ cos 2 (/4))*(/180) = 1 + (1/(2/2) 2)*(/180) = 1 + /90 ( 1,035)

    Кроме того, с помощью дифференциала может быть решена задача определения абсолютной и относительной погрешностей функции по заданной погрешности нахождения (измерения) аргумента.

    Пусть необходимо вычислить значение данной функции у = f(x) при некотором значении аргумента х 1 , истинная величина которого неизвестна, а известно лишь его приближенное значение х с абсолютной погрешностью |х| = |х - х 1 |. Если вместо истинного значенияf(x 1) взять величинуf(x), то абсолютная ошибка функции будет равна |f(x 1) -f(x)| = |y|dy=f`(x)х.

    При этом относительная погрешность функции  y = |y/y| при достаточно малыхх будет равна, где Е х (y) – эластичность функции, а х = |x/x| - относительная погрешность аргумента.