Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com
Шкала электромагнитных волн. Виды, свойства и применение.
Из истории открытий… 1831 – Майкл Фарадей установил, что любое изменение магнитного поля вызывает появление в окружающем пространстве индукционного (вихревого) электрического поля.
1864 – Джеймс - Клерк Максвелл высказал гипотезу о существовании электромагнитных волн, способных распространятся в вакууме и диэлектриках. Однажды начавшийся в некоторой точке процесс изменения электромагнитного поля будет непрерывно захватывать новые области пространства. Это и есть электромагнитная волна.
1887 - Генрих Герц опубликовал работу "О весьма быстрых электрических колебаниях", где описал свою экспериментальную установку - вибратор и резонатор, - и свои опыты. При электрических колебаниях в вибраторе в пространстве вокруг него возникает вихревое переменное электромагнитное поле, которое регистрируется резонатором.
Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью.
Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.
Низкочастотные колебания Длина волны(м) 10 13 - 10 5 Частота(Гц) 3· 10 -3 - 3 ·10 3 Энергия(ЭВ) 1 – 1,24 ·10 -10 Источник Реостатный альтернатор, динамомашина, Вибратор Герца, Генераторы в электрических сетях (50 Гц) Машинные генераторы повышенной (промышленной) частоты (200 Гц) Телефонные сети (5000Гц) Звуковые генераторы (микрофоны, громкоговорители) Приемник Электрические приборы и двигатели История открытия Лодж (1893 г.), Тесла (1983) Применение Кино, радиовещание(микрофоны, громкоговорители)
Радиоволны Получаются с помощью колебательных контуров и макроскопических вибраторов. Свойства: радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами. проявляют свойства дифракции и интерференции. Длины волн охватывают область от 1 мкм до 50 км
Применение: Радиосвязь, телевидение, радиолокация.
Инфракрасное излучение (тепловое) Излучается атомами или молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Свойства: проходит через некоторые непрозрачные тела, а также сквозь дождь, дымку, снег, туман; производит химическое действие (фототгластинки); поглощаясь веществом, нагревает его; невидимо; способно к явлениям интерференции и дифракции; регистрируется тепловыми методами.
Применение: Прибор ночного видения, криминалистика, физиотерапия, в промышленности для сушки изделий, древесины, фруктов
Видимое излучение Свойства: отражение, преломление, воздействует на глаз, способно к явлению дисперсии, интерференции, дифракции. Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового). Диапазон длин волн занимает небольшой интервал приблизительно от 390 до750 нм.
Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t 0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека (загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ.
Применение: в медицине, в промышленности.
Рентгеновские лучи Излучаются при больших ускорениях электронов. Свойства: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р =3 атм) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм)
Применение: В медицине с целью диагностики заболеваний внутренних органов; в промышленности для контроля внутренней структуры различных изделий.
γ -излучение Источники: атомное ядро (ядерные реакции). Свойства: Имеет огромную проникающую способность, оказывает сильное биологическое воздействие. Длина волны менее 0,01 нм. Самое высокоэнергетическое излучение
Применение: В медицине, производстве (γ -дефектоскопия).
Воздействие ЭМВ на организм человека
Спасибо за внимание!
У того факта, что на свете не существует волн всех без исключения частот (от ν = 0 Г ц до ν = ∞ Г ц), есть объективные причины. Они заключаются в том, что световые волны обладают не только волновыми, но и корпускулярными свойствами, что накладывает на их длину определенные ограничения.
Согласно квантовой теории, испускание электромагнитного излучения происходит в виде порций энергии – квантов. Энергия квантов связана с их частотой.
Формула содержит постоянную Планка – h = 6 , 62 · 10 - 34 Д ж · c , а h = h 2 π = 1 , 05 · 10 - 34 Д ж · с – это постоянная Планка с чертой.
Из формулы можно сделать вывод о невозможности существования бесконечной частоты, поскольку квантов с бесконечной величиной энергии не бывает. Также данное выражение ограничивает и низкие частоты, поскольку энергия кванта имеет минимально возможное значение W 0 , следовательно, существует и минимальная частота, ниже которой волна иметь не может.
Замечание 1
Важно отметить, что пока не существует явных доказательств наличия нижней границы энергии у фотонов. В стабильных электромагнитных волнах между земной поверхностью и ионосферой отмечена минимальная частота, равная примерно 8 Г ц.
На сегодняшний день известно несколько типов электромагнитных волн. Их основные характеристики приведены в таблице:
Шкала волн указывает на то, что каждый диапазон имеет свои индивидуальные особенности. Чем больше частота, тем сильнее проявляются корпускулярные свойства излучения.
В разных частях спектра электромагнитных излучений волны генерируются по-разному. Для изучения каждого типа волны существуют особые разделы физики. Различия между участками спектра заключаются не столько в физической природе волн, сколько в способах их приема и получения. Резкого перехода между ними, как правило, нет, возможно и перекрытие участков, поскольку границы условны.
Определение 1
Оптика изучает так называемый оптический диапазон электромагнитных волн – часть спектра с включением фрагментов зон инфракрасного и ультрафиолетового излучения, которая доступна человеческому глазу.
Определение 2
Кванты, которые присутствуют в видимой части излучения, называются фотонами .
Волны всего спектра электромагнитного излучения обладают как волновыми, так и квантовыми свойствами, однако те или иные свойства в зависимости от длины волн могут преобладать. Следовательно, для их изучения нужно пользоваться разными методами. Практическое применение у разных групп волн также различается в зависимости от длины.
Оптический диапазон характеризуется слабым взаимодействием света и вещества, а также тем, что в нем выполняются законы геометрической оптики.
Замечание 2
На частоты ниже оптического диапазона законы геометрической оптики уже не распространяются, а высокочастотное электромагнитное поле либо пронизывает вещество насквозь, либо разрушает его.
Видимый свет очень важен для всего живого на Земле, особенно для процессов фотосинтеза. Радиоволны активно применяются в телевидении, радиолокационных процессах, радиосвязи, т.к. это самые длинные волны спектра, которые могут быть легко сгенерированы с помощью колебательного контура (сочетания индуктивности и емкости). Радиоволны могут испускаться атомами и молекулами – это свойство находит применение в радиоастрономии.
Можно сформулировать общее утверждение, согласно которому источником электромагнитных волн являются частицы в атомах и ядрах. Они заряжены и движутся ускоренно.
В 1800 г. В. Гершель изучил на практике инфракрасную область спектра. Он расположил термометр ближе к красному краю спектра и увидел, что температура начала расти, значит, термометр нагрелся излучением, невидимым глазу. Инфракрасное излучение можно перевести в видимую часть диапазона с помощью специальных приборов (например, на этом свойстве основаны приборы ночного видения). Любое нагретое тело является источником инфракрасного излучения.
Ультрафиолетовое излучение было открыто И. Риттером. Он нашел невидимые глазу лучи за фиолетовой частью спектра и обнаружил, что они могут воздействовать на определенные химические соединения и убивать некоторые виды бактерий. Это свойство нашло широкое применение в медицине. Являясь частью солнечных лучей, ультрафиолет оказывает воздействие на человеческую кожу, способствуя ее потемнению (появлению загара).
В. Рентген в 1895 г. обнаружил еще один вид излучения, который был позже назван в его честь. Рентгеновские лучи не видны глазу и могут проходить через толстые слои непрозрачного вещества без значительного поглощения. Они также могут воздействовать на фотопленку и вызывать свечение некоторых видов кристаллов. Рентгеновские лучи широко применяются в области медицинской диагностики, а их способность воздействовать на живые организмы весьма значительна.
Определение 3
Гамма-излучением называется излучение, возникающее при возбуждении атомных ядер и взаимодействии элементарных частиц.
Гамма-излучение имеет наименьшую длину волны, следовательно, корпускулярные свойства у него наиболее выражены. Его принято рассматривать в качестве потока гамма-квантов. Существует перекрытие рентгеновских и гамма-волн в области длин 10 - 10 - 10 - 14 м.
Пример 1
Условие: объясните, что выступает в качестве излучателя для разных видов электромагнитных волн.
Решение
Электромагнитные волны всегда излучаются движущимися заряженными частицами. Они движутся ускоренно в атомах и ядрах, значит, именно там будет находиться источник волн. Радиоволны испускаются молекулами и атомами (единственный вид излучения, который можно воссоздать искусственным путем). Инфракрасное – за счет колебаний атомов в молекулах (здесь имеют место тепловые колебания, усиливающиеся с ростом температуры). Видимый свет создается отдельными возбужденными атомами. Ультрафиолетовый свет также является атомарным. Рентгеновские лучи создаются за счет взаимодействия электронов с высокой кинетической энергией с ядрами атомов, а также за счет собственного возбуждения ядер. Гамма-лучи образуются за счет возбужденных ядер и взаимном превращении элементарных частиц.
Пример 2
Условие: вычислите частоты волн в видимом диапазоне.
Решение
К видимому диапазону относятся волны, воспринимаемые человеческим глазом. Границы зрения индивидуальны и находятся в пределе λ = 0 , 38 - 0 , 76 м к м.
В оптике используются два основных вида частот. Первая из них – круговая – может быть определена как ω = 2 π T (Т - период колебания волны). Вторая определяется как ν = 1 T .
Значит, мы можем связать одну частоту с другой при помощи следующего соотношения:
Зная, что скорость распространения электромагнитных волн в вакууме равна c = 3 · 10 8 м с, запишем:
λ = с T → T = λ c .
В этом случае для границ видимого диапазона получим:
ν = c λ , ω = 2 π c λ .
Поскольку мы не знаем длины волн видимого света, то:
ν 1 = 3 · 10 8 0 , 38 · 10 - 6 = 7 , 9 · 10 14 (Г ц) ; v 2 = 3 · 10 8 0 , 76 · 10 16 = 3 , 9 · 10 14 (Г ц) ; ω 1 = 2 · 3 , 14 · 7 , 9 · 10 14 = 5 · 10 15 (с - 1) ; ω 2 = 2 · 3 , 14 · 3 , 9 · 10 14 = 2 , 4 · 10 15 (с - 1) .
Ответ: 3 , 9 · 10 14 Г ц.
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Цель урока : обеспечить в ходе урока повторение основных законов, свойств электромагнитных волн;
Образовательная: Систематизировать материал по теме, осуществить коррекцию знаний, некоторое ее углубление;
Развивающая : Развитие устной речи учащихся, творческих навыков учащихся, логики, памяти; познавательных способностей;
Воспитательная : Формировать интерес учащихся к изучению физики. воспитывать аккуратность и навыки рационального использования своего времени;
Тип урока : урок повторения и коррекции знаний;
Оборудование : компьютер, проектор, презентация «Шкала электромагнитных излучений», диск « Физика. Библиотека наглядных пособий».
Ход урока:
1. Объяснение нового материала.
1. Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10 -10 м (g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
2. Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и
g-излучение.
Со всеми этими излучениями, кроме g
-излучения, вы уже знакомы. Самое коротковолновое g
-излучение испускают атомные ядра.
3. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с.
Границы между отдельными областями шкалы излучений весьма условны.
4. Излучения различной длины волны отличаются друг от друга по способу их
получения
(излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
5. Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g
-излучениям, сильно поглощаемом атмосферой.
6. По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
7. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g
-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Обобщим знания о волнах и запишем все виде таблиц.
1. Низкочастотные колебания
| Низкочастотные колебания | |
| Длина волны(м) | 10 13 - 10 5 |
| Частота(Гц) | 3· 10 -3 - 3 ·10 3 |
| Энергия(ЭВ) | 1 – 1,24 ·10 -10 |
| Источник | Реостатный альтернатор, динамомашина, Вибратор Герца, Генераторы в электрических сетях (50 Гц) Машинные генераторы повышенной (промышленной) частоты (200 Гц) Телефонные сети (5000Гц) Звуковые генераторы (микрофоны, громкоговорители) |
| Приемник | Электрические приборы и двигатели |
| История открытия | Лодж (1893 г.), Тесла (1983) |
| Применение | Кино, радиовещание(микрофоны, громкоговорители) |
2. Радиоволны


| Радиоволны | |
| Длина волны(м) | 10 5 - 10 -3 |
| Частота(Гц) | 3 ·10 3 - 3 ·10 11 |
| Энергия(ЭВ) | 1,24 ·10-10 - 1,24 · 10 -2 |
| Источник | Колебательный контур Макроскопические вибраторы |
| Приемник | Искры в зазоре приемного вибратора Свечение газоразрядной трубки, когерера |
| История открытия | Феддерсен (1862 г.), Герц (1887 г.), Попов, Лебедев, Риги |
| Применение | Сверхдлинные
- Радионавигация, радиотелеграфная связь, передача метеосводок Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация Короткие - радиолюбительская связь УКВ - космическая радио связь ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение ММВ - радиолокация |

| Инфракрасное излучение | |
| Длина волны(м) | 2 ·10 -3 - 7,6· 10 -7 |
| Частота(Гц) | 3 ·10 11 - 3 ·10 14 |
| Энергия(ЭВ) | 1,24· 10 -2 – 1,65 |
| Источник | Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания Человек излучает электромагнитные волны длиной 9 10 -6 м |
| Приемник | Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки |
| История открытия | Рубенс и Никольс (1896 г.), |
| Применение | В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп, |
4. Видимое излучение


5. Ультрафиолетовое излучение
| Ультрафиолетовое излучение | |
| Длина волны(м) | 3,8 10 -7 - 3 ·10 -9 |
| Частота(Гц) | 8 ·10 14 - 10 17 |
| Энергия(ЭВ) | 3,3 – 247,5 ЭВ |
| Источник | Входят в состав солнечного света Газоразрядные лампы с трубкой из кварца Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути) |
| Приемник | Фотоэлементы, Фотоумножители, Люминесцентные вещества |
| История открытия | Иоганн Риттер, Лаймен |
| Применение | Промышленная электроника и автоматика, Люминисценнтные лампы, Текстильное производство Стерилизация воздуха |
6. Рентгеновское излучение

| Рентгеновское излучение | |
| Длина волны(м) | 10 -9 - 3 ·10 -12 |
| Частота(Гц) | 3 ·10 17 - 3 ·10 20 |
| Энергия(ЭВ) | 247,5 – 1,24 ·105 ЭВ |
| Источник | Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ. давление в баллоне – 10 -3 – 10 -5 н/м 2 , катод – накаливаемая нить. Материал анодов W,Mo, Cu, Bi, Co, Tl и др. Η = 1-3%, излучение – кванты большой энергии) Солнечная корона |
| Приемник | Фотопленка, Свечение некоторых кристаллов |
| История открытия | В. Рентген, Милликен |
| Применение | Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов) |
7. Гамма - излучение
Вывод
Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).
Литература:
Длины электромагнитных волн, которые могут быть зарегистрированы приборами, лежат в очень широком диапазоне. Все эти волны обладают общими свойствами: поглощение, отражение, интерференция, дифракция, дисперсия. Свойства эти могут, однако, проявляться по-разному. Различными являются источники и приемники волн.
Радиоволны
ν =10 5 - 10 11 Гц, λ =10 -3 -10 3 м.
Получают с помощью колебательных контуров и макроскопических вибраторов. Свойства. Радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами. Применение Радиосвязь, телевидение, радиолокация. В природе радиоволны излучаются различными внеземными источниками (ядра галактик, квазары).
Инфракрасное излучение (тепловое)
ν =3-10 11 - 4 . 10 14 Гц, λ =8 . 10 -7 - 2 . 10 -3 м.
Излучается атомами и молекулами вещества.
Инфракрасное излучение дают все тела при любой температуре.
Человек излучает электромагнитные волны λ≈9 . 10 -6 м.
Свойства
Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.
Применение . Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.
Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового):
Свойства . В оздействует на глаз.
![]()
(меньше, чем у фиолетового света)
Источники: газоразрядные лампы с трубками из кварца (кварцевые лампы).
Излучается всеми твердыми телами, у которых T>1000°С, а также светящимися парами ртути.
Свойства . Высокая химическая активность (разложение хлорида серебра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.
Рентгеновские лучи
Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р= 10 -3 -10 -5 Па) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 им). Свойства Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Применение . В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).
γ-излучение
Источники : атомное ядро (ядерные реакции). Свойства . Имеет огромную проникающую способность, оказывает сильное биологическое воздействие. Применение . В медицине, производстве (γ -дефектоскопия). Применение . В медицине, в промышленности.
Общим свойством электромагнитных волн является также то, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.
По мере развития науки и техники были обнаружены различные виды излучений: радиоволны, видимый свет, рентгеновские лучи, гамма- излучение. Все эти излучения имеют одну и ту же природу. Они являются электромагнитными волнами . Разнообразие свойств этих излучений обусловлено их частотой (или длиной волны). Между отдельными видами излучений нет резкой границы, один вид излучения плавно переходит в другой. Различие свойств становится заметным только в том случае, когда длины волн различаются на несколько порядков.
Для систематизации всех видов излучений составлена единая шкала электромагнитных волн:
Шкала электромагнитных волн это непрерывная последовательность частот (длин волн) электромагнитных излучений. Разбиение шкалы ЭМВ на диапазоны весьма условное.
Известные электромагнитные волны охватывают огромный диапазон длин волн от 10 4 до 10 -10 м . По способу получения можно выделить следующие области длин волн:
1. Низкочастотные волны более 100 км (10 5 м). Источник излучения - генераторы переменного тока
2. Радиоволны от 10 5 м до 1 мм. Источник излучения - открытый колебательный контур (антенна) Выделяются области радиоволн:
ДВ длинные волны - более 10 3 м,
СВ средние - от 10 3 до 100 м,
КВ короткие - от 100 м до 10 м,
УКВ ультракороткие - от 10 м до 1 мм;
3 Инфракрасное излучении (ИК) 10 –3 -10 –6 м. Область ультракоротких радиоволн смыкается с участком инфракрасных лучей. Граница между ними условная и определяется способом их получения: ультракороткие радиоволны получают с помощью генераторов (радиотехнические методы), а инфракрасные лучи излучаются нагретыми телами в результате атомных переходов с одного энергетического уровня на другой.
4. Видимый свет 770-390 нм Источник излучения – электронные переходы в атомах. Порядок цветов в видимой части спектра, начиная с длинноволновой области КОЖЗГСФ. Излучаются в результате атомных переходов с одного энергетического уровня на другой.
5 . Ультрафиолетовое излучение (УФ) от 400 нм до 1 нм. Ультрафиолетовые лучи получают с помощью тлеющего разряда, обычно в парах ртути. Излучаются в результате атомных переходов с одного энергетического уровня на другой.
6 . Рентгеновские лучи от 1 нм до 0,01 нм . Излучаются в результате атомных переходов с одного внутреннего энергетического уровня на другой.
7. За рентгеновскими лучами идет область гамма-лучей (γ) с длинами волн менее 0,1 нм. Излучаются при ядерных реакциях.
Область рентгеновских и гамма-лучей частично перекрывается, и различать эти волны можно не по свойствам, а по методу получения: рентгеновские лучи возникают в специальных трубках, а гамма-лучи испускаются при радиоактивном распаде ядер некоторых элементов.
По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению веществом. Коэффициент отражения веществом электромагнитных волн также зависит от длины волны.
Электромагнитные волны отражаются и преломляются согласно законам отражения и преломления.
Для электромагнитных волн можно наблюдать волновые явления - интерференции, дифракции, поляризации, дисперсии.