Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Критерии согласия, применяемые для проверки статистических гипотез. Статистические гипотезы

Критерии согласия, применяемые для проверки статистических гипотез. Статистические гипотезы

Критерии согласия (соответствия)

Для проверки гипотезы о соответствии эмпирического распределения теоретическому закону распределения используются особые статистические показатели - критерии согласия (или критерии соответствия). К ним относятся критерии Пирсона, Колмогорова, Романовского, Ястрем- ского и др. Большинство критериев согласия базируется на использовании отклонений эмпирических частот от теоретических. Очевидно, что чем меньше эти отклонения, тем лучше теоретическое распределение соответствует эмпирическому (или описывает его).

Критерии согласия - это критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Такие критерии подразделяются на два класса: общие и специальные. Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей. Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.

Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда - существенными (неслучайными). Из этого следует, что критерии согласия позволяют отвергнуть или иодтвердить правильность выдвинутой при выравнивании ряда гипотезы о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения.

Критерий согласия Пирсона х 2 (хи-квадрат) - один из основных критериев согласия. Предложен английским математиком Карлом Пирсоном (1857-1936) для оценки случайности (существенности) расхождений между частотами эмпирического и теоретического распределений:

где k - число групп, на которые разбито эмпирическое распределение; fi - эмпирическая частота признака в i -й группе; / тс °р - теоретическая частота признака в i-й группе.

Схема применения критерия у} к оценке согласованности теоретического и эмпирического распределений сводится к следующему.

  • 1. Определяется расчетная мера расхождения % 2 асч.
  • 2. Определяется число степеней свободы.
  • 3. По числу степеней свободы v с помощью специальной таблицы определяется %^бл
  • 4. Если % 2 асч >х 2 абл, то при заданном уровне значимости а и числе степеней свободы v гипотезу о несущественности (случайности) расхождений отклоняют. В противном случае гипотезу можно признать не противоречащей полученным экспериментальным данным и с вероятностью (1 - а) можно утверждать, что расхождения между теоретическими и эмпирическими частотами случайны.

Уровень значимости - это вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости:

  • 1) а = 0,1, тогда Р = 0,9;
  • 2) а = 0,05, тогда Р = 0,95;
  • 3) а = 0,01, тогда Р = 0,99.

Используя критерий согласия у}, необходимо соблюдать следующие условия.

  • 1. Объем исследуемой совокупности должен удовлетворять условию п > 50, при этом частота или численность группы должна быть не менее 5. Если это условие нарушается, необходимо предварительно объединить небольшие частоты (меньше 5).
  • 2. Эмпирическое распределение должно состоять из данных, полученных в результате случайного отбора, т.е. они должны быть независимыми.

Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений. В связи с этим рекомендуется дополнять проверку соответствия распределений но критерию у} другими критериями. Особенно это необходимо при объеме выборки п ~ 100.

В статистике критерий согласия Колмогорова (также известный как критерий согласия Колмогорова - Смирнова) используется для того, чтобы определить, подчиняются ли два эмпирических распределения одному закону, либо определить, подчиняется ли полученное распределение предполагаемой модели. Критерий Колмогорова основан на определении максимального расхождения между накопленными частотами или частостями эмпирических или теоретических распределений. Критерий Колмогорова исчисляется по следующим формулам:

где D и d - соответственно максимальная разность между накопленными частотами (/-/") и между накопленными частостями (р-р ") эмпирического и теоретического рядов распределений; N - число единиц в совокупности.

Рассчитав значение X, по специальной таблице определяется вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Если признак принимает значения до 0,3, то это означает, что происходит полное совпадение частот. При большом числе наблюдений критерий Колмогорова способен обнаружить любое отступление от гипотезы. Это означает, что любое отличие распределения выборки от теоретического будет с его помощью обнаружено, если наблюдений будет достаточно много. Практическая значимость этого свойства несущественна, так как в большинстве случаев трудно рассчитывать на получение большого числа наблюдений в неизменных условиях, теоретическое представление о законе распределения, которому должна подчиняться выборка, всегда приближенное, а точность статистических проверок не должна превышать точность выбранной модели.

Критерий согласия Романовского основан на использовании критерия Пирсона, т.е. уже найденных значений х 2 > и числа степеней свободы:

где v - число степеней свободы вариации.

Критерий Романовского удобен при отсутствии таблиц для х 2 . Если К р К? > 3, то неслучайны и теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

Б. С. Ястремский использовал в критерии согласия не число степеней свободы, а число групп (k ), особую величину 0, зависящую от числа групп, и величину хи-квадрат. Критерий согласия Ястремского имеет тот же смысл, что и критерий Романовского, и выражается формулой

где х 2 - критерий согласия Пирсона; /е гр - число групп; 0 - коэффициент, для числа групп меньше 20 равный 0,6.

Если 1ф акт > 3, расхождения между теоретическими и эмпирическими распределениями неслучайны, т.е. эмпирическое распределение не отвечает требованиям нормального распределения. Если 1ф акт

Теоретические и эмпирические частоты. Проверка на нормальность распределения

При анализе вариационных рядов распределения большое значение имеет, насколько эмпирическое распределение признака соответствует нормальному . Для этого частоты фактического распределения нужно сравнить с теоретическими, которые характерны для нормального распределения. Значит, нужно по фактическим данным вычислить теоретические частоты кривой нормального распределения, являющиеся функцией нормированных отклонений.

Иначе говоря, эмпирическую кривую распределения нужно выровнять кривой нормального распределения.

Объективная характеристика соответствия теоретических и эмпирических частот может быть получена при помощи специальных статистических показателей, которые называют критериями согласия .

Критерием согласия называют критерий, который позволяет установить, является ли расхождение эмпирического и теоретического распределений случайным или значимым, т. е. согласуются ли данные наблюдений с выдвинутой статистической гипотезой или не согласуются. Распределение генеральной совокупности, которое она имеет в силу выдвинутой гипотезы, называют теоретическим.

Возникает необходимость установить критерий (правило), которое позволяло бы судить, является ли расхождение между эмпирическим и теоретическим распределениями случайным или значимым. Если расхождение окажется случайным , то считают, что данные наблюдений (выборки) согласуются с выдвинутой гипотезой о законе распределения генеральной совокупности и, следовательно, гипотезу принимают; если же расхождение окажется значимым , то данные наблюдений не согласуются с гипотезой и ее отвергают.

Обычно эмпирические и теоретические частоты различаются в силу того, что:

    расхождение случайно и связано с ограниченным количеством наблюдений;

    расхождение неслучайно и объясняется тем, что статистическая гипотеза о том, что генеральная совокупность распределена нормально - ошибочна.

Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы о характере распределения в эмпирическом ряду.

Эмпирические частоты получают в результате наблюдения. Теоретические частоты рассчитывают по формулам.

Для закона нормального распределения их можно найти следующим образом:

    Σƒ i- сумма накопленных (кумулятивных) эмпирических частот

    h - разность между двумя соседними вариантами

    σ - выборочное среднеквадратическое отклонение

    t–нормированное (стандартизированное) отклонение

    φ(t)–функция плотности вероятности нормального распределения (находят по таблице значений локальной функции Лапласа для соответствующего значения t)

Имеется несколько критериев согласия, наиболее распространенными из которых являются: критерий хи-квадрат (Пирсона), критерий Колмогорова, критерий Романовского.

Критерий согласия Пирсона χ 2 – один из основных, который можно представить как сумму отношений квадратов расхождений между теоретическими (f Т) и эмпирическими (f) частотами к теоретическим частотам:

    k–число групп, на которые разбито эмпирическое распределение,

    f i –наблюдаемая частота признака в i-й группе,

    f T –теоретическая частота.

Для распределения χ 2 составлены таблицы, где указано критическое значение критерия согласия χ 2 для выбранного уровня значимости α и степеней свободы df (или ν). Уровень значимости α – вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. Р - статистическая достоверность принятия верной гипотезы. В статистике чаще всего пользуются тремя уровнями значимости:

α=0,10, тогда Р=0,90 (в 10 случаях из 100)

α=0,05, тогда Р=0,95 (в 5 случаях из 100)

α=0,01, тогда Р=0,99 (в 1 случае из 100) может быть отвергнута правильная гипотеза

Число степеней свободы df определяется как число групп в ряду распределения минус число связей: df = k –z. Под числом связей понимается число показателей эмпирического ряда, использованных при вычислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретические частоты. Например, при выравнивании по кривой нормального распределения имеется три связи. Поэтому при выравнивании по кривой нормального распределения число степеней свободы определяется как df =k–3. Для оценки существенности, расчетное значение сравнивается с табличным χ 2 табл

При полном совпадении теоретического и эмпирического распределений χ 2 =0, в противном случае χ 2 >0. Если χ 2 расч > χ 2 табл, то при заданном уровне значимости и числе степеней свободы гипотезу о несущественности (случайности) расхождений отклоняем. В случае, если χ 2 расч < χ 2 табл то гипотезу принимаем и с вероятностью Р=(1-α) можно утверждать, что расхождение между теоретическими и эмпирическими частотами случайно. Следовательно, есть основания утверждать, что эмпирическое распределение подчиняется нормальному распределению . Критерий согласия Пирсона используется, если объем совокупности достаточно велик (N>50), при этом, частота каждой группы должна быть не менее 5.

Критерий согласия Колмогорова основан на определении максимального расхождения между накопленными эмпирическими и теоретическими частотами:

где D и d – соответственно, максимальная разность между накопленными частотами и накопленными частостями эмпирического и теоретического распределений. По таблице распределения статистики Колмогорова определяют вероятность, которая может изменяться от 0 до 1. При Р(λ)=1- происходит полное совпадение частот, Р(λ)=0 – полное расхождение. Если величина вероятности Р значительна по отношению к найденной величине λ, то можно предположить, что расхождения между теоретическим и эмпирическим распределениями несущественны, т. е. носят случайный характер. Основное условие использования критерия Колмогорова – достаточно большое число наблюдений.

Критерий согласия Колмогорова

Рассмотрим как критерий Колмогорова (λ) применяется при проверке гипотезы о нормальном распределении генеральной совокупности. Выравнивание фактического распределения по кривой нормального распределения состоит из нескольких этапов:

    Сравнивают фактические и теоретические частоты.

    По фактическим данным определяют теоретические частоты кривой нормального распределения, которая является функцией нормированного отклонения.

    Проверяют на сколько распределение признака соответствует нормальному.

Для IV колонки таблицы:

В MS Excel нормированное отклонение (t) рассчитывается с помощью функции НОРМАЛИЗАЦИЯ. Необходимо выделить диапазон свободных ячеек по количеству вариант (строк электронной таблицы). Не снимая выделения, вызвать функцию НОРМАЛИЗАЦИЯ. В появившемся диалоговом окне указать следующие ячейки, в которых размещены, соответственно, наблюдаемые значения (X i), средняя (X) и среднеквадратическое отклонение Ϭ. Операцию обязательно завершить одновременным нажатием клавиш Ctrl+Shift+Enter

Для V колонки таблицы:

Функцию плотности вероятности нормального распределения φ(t) находим по таблице значений локальной функции Лапласа для соответствующего значения нормированного отклонения (t)

Для VI колонки таблицы:

Критерий согласия Колмогорова (λ) определяется путем деления модуля max разности между эмпирическими и теоретическими кумулятивными частотами на корень квадратный из числа наблюдений:

По специальной таблице вероятности для критерия согласия λ определяем, что значению λ=0,59 соответствует вероятность 0,88 (λ

Распределение эмпирических и теоретических частот, плотности вероятности теоретического распределения

Применяя критерии согласия для проверки соответствия наблюдаемого (эмпирического) распределения теоретическому, следует различать проверку простых и сложных гипотез.

Одновыборочный критерий нормальности Колмогорова-Смирнова основан на максимуме разности между кумулятивным эмпирическим распределением выборки и предполагаемым (теоретическим) кумулятивным распределением. Если D статистика Колмогорова-Смирнова значима, то гипотеза о том, что соответствующее распределение нормально, должна быть отвергнута.

Для проверки гипотезы о соответствии эмпирического распределения теоретическому закону распределения используются особые статистические показатели - критерии согласия (или критерии соответствия). К ним относятся критерии Пирсона, Колмогорова, Романовского, Ястремского и др. Большинство критериев согласия базируется на использовании отклонений эмпирических частот от теоретических. Очевидно, что чем меньше эти отклонения, тем лучше теоретическое распределение соответствует эмпирическому (или описывает его).

Критерии согласия - это критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Такие критерии подразделяются на два класса: общие и специальные. Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно, к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей. Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.

Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда - существенными (неслучайными). Из этого следует, что критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения.

Критерий согласия Пирсона c 2 (хи-квадрат) - один из основных критериев согласия. Предложен английским математиком Карлом Пирсоном (1857-1936) для оценки случайности (существенности) расхождений между частотами эмпирического и теоретического распределений:

Схема применения критерия c 2 к оценке согласованности теоретического и эмпирического распределений сводится к следующему:

1. Определяется расчетная мера расхождения .

2. Определяется число степеней свободы.

3. По числу степеней свободы n с помощью специальной таблицы определяется .

4. Если , то при заданном уровне значимости α и числе степеней свободы n гипотезу о несущественности (случайности) расхождений отклоняют. В противном случае гипотезу можно признать не противоречащей полученным экспериментальным данным и с вероятностью (1 – α) можно утверждать, что расхождения между теоретическими и эмпирическими частотами случайны.

Уровень значимости - это вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости:

1) a = 0,1, тогда Р = 0,9;

2) a = 0,05, тогда Р = 0,95;

3) a = 0,01, тогда Р = 0,99.

Используя критерий согласия c 2 , необходимо соблюдать следующие условия:

1. Объем исследуемой совокупности должен быть достаточно большим (N ≥ 50), при этом частота или численность группы должна быть не менее 5. Если это условие нарушается, необходимо предварительно объединить небольшие частоты (меньше 5).

2. Эмпирическое распределение должно состоять из данных, полученных в результате случайного отбора, т.е. они должны быть независимыми.

Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений. В связи с этим рекомендуется дополнять проверку соответствия распределений по критерию c 2 другими критериями. Особенно это необходимо при сравнительно малом объеме выборки (n ≈ 100).

В статистике критерий согласия Колмогорова (также известный, как критерий согласия Колмогорова - Смирнова) используется для того, чтобы определить, подчиняются ли два эмпирических распределения одному закону, либо определить, подчиняется ли полученное распределение предполагаемой модели. Критерий Колмогорова основан на определении максимального расхождения между накопленными частотами или частостями эмпирических или теоретических распределений. Критерий Колмогорова исчисляется по следующим формулам:

где D и d - соответственно максимальная разность между накопленными частотами (f f ¢) и между накопленными частостями (p p ¢) эмпирического и теоретического рядов распределений; N - число единиц в совокупности.

Рассчитав значение λ, по специальной таблице определяется вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Если признак принимает значения до 0,3, то это означает, что происходит полное совпадение частот. При большом числе наблюдений критерий Колмогорова способен обнаружить любое отступление от гипотезы. Это означает, что любое отличие распределения выборки от теоретического будет с его помощью обнаружено, если наблюдений будет достаточно много. Практическая значимость этого свойства не существенна, так как в большинстве случаев трудно рассчитывать на получение большого числа наблюдений в неизменных условиях, теоретическое представление о законе распределения, которому должна подчиняться выборка, всегда приближенное, а точность статистических проверок не должна превышать точность выбранной модели.

Критерий согласия Романовского основан на использовании критерия Пирсона, т.е. уже найденных значений c 2 , и числа степеней свободы:

где n - число степеней свободы вариации.

Критерий Романовского удобен при отсутствии таблиц для . Если < 3, то расхождения распределений случайны, если же > 3, то не случайны и теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

Б. С. Ястремский использовал в критерии согласия не число степеней свободы, а число групп (k ), особую величину q, зависящую от числа групп, и величину хи-квадрат. Критерий согласия Ястремского имеет тот же смысл, что и критерий Романовского, и выражается формулой

где c 2 - критерий согласия Пирсона; - число групп; q - коэффициент, для числа групп меньше 20 равный 0,6.

Если L факт > 3, расхождениz между теоретическими и эмпирическими распределениями неслучайны, т.е. эмпирическое распределение не отвечает требованиям нормального распределения. Если L факт < 3, расхождения между эмпирическим и теоретическим распределениями считаются случайными.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

АЗОВСКИЙ РЕГИОНАЛЬНЫЙ ИНСТИТУТ УПРАВЛЕНИЯ

ЗАПОРОЖСКОГО НАЦИОНАЛЬНОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

Кафедра математики

КУРСОВАЯ РАБОТА

З дисциплины «СТАТИСТИКА»

На тему: «КРИТЕРИИ СОГЛАСИЯ»

студентки 2-го курса

группы 207 факультета управления

Батуры Татьяны Олеговны

Научный руководитель

доцент Косенков О. И.

Бердянск – 2009г.


ВВЕДЕНИЕ

1.2 Критерии согласия χ 2 Пирсона для простой гипотезы

1.3 Критерии согласия для сложной гипотезы

1.4 Критерии согласия χ 2 Фишера для сложной гипотезы

1.5 Другие критерии согласия. Критерии согласия для распределения Пуассона

РАЗДЕЛ II. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КРИТЕРИЯ СОГЛАСИЯ

ПРИЛОЖЕНИЯ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

В данной курсовой работе рассказано о наиболее распространенных критериях согласия – омега-квадрат, хи-квадрат, Колмогорова и Колмогорова-Смирнова. Особенное внимание уделено случаю, когда необходимо проверить принадлежность распределения данных некоторому параметрическому семейству, например, нормальному. Эта весьма распространенная на практике ситуация из-за своей сложности исследована не до конца и не полностью отражена в учебной и справочной литературе.

Критериями согласия называют статистические критерии, предназначенные для проверки согласия опытных данных и теоретической модели. Лучше всего этот вопрос разработан, если наблюдения представляют случайную выборку. Теоретическая модель в этом случае описывает закон распределения.

Теоретическое распределение – это то распределение вероятностей, которое управляет случайным выбором. Представления о нем может дать не только теория. Источниками знаний здесь могут быть и традиция, и прошлый опыт, и предыдущие наблюдения. Надо лишь подчеркнуть, что это распределение должно быть выбрано независимо от тех данных, по которым мы собираемся его проверять. Иначе говоря, недопустимо сначала «подогнать» по выборке некоторый закон распределения, а потом пытаться проверить согласие с полученным законом по этой же выборке.

Простые и сложные гипотезы. Говоря о теоретическом законе распределения, которому гипотетически должны бы следовать элементы данной выборки, надо различать простые и сложные гипотезы об этом законе:

· простая гипотеза прямо указывает некий определенный закон вероятностей (распределение вероятностей), по которому возникли выборочные значения;

· сложная гипотеза указывает на единственное распределение, а какое-то их множество (например, параметрическое семейство).

Критерии согласия основаны на использовании различных мер расстояний между анализируемым эмпирическим распределением и функцией распределения признака в генеральной совокупности.

Непараметрические критерии согласия Колмогорова, Смирнова, омега квадрат широко используются. Однако с ними связаны и широко распространенные ошибки в применении статистических методов.

Дело в том, что перечисленные критерии были разработаны для проверки согласия с полностью известным теоретическим распределением. Расчетные формулы, таблицы распределений и критических значений широко распространены. Основная идея критериев Колмогорова, омега квадрат и аналогичных им состоит в измерении расстояния между функцией эмпирического распределения и функцией теоретического распределения. Различаются эти критерии видом расстояний в пространстве функций распределения.

Приступая к выполнению данной курсовой работы, я поставила себе за цель, узнать какие существуют критерии согласия, разобраться для чего же они нужны. Для осуществления этой цели необходимо выполнить следующие задания:

1. Раскрыть суть понятия “критерии согласия”;

2. Определить какие критерии согласия существуют, изучить их по отдельности;

3. Сделать выводы по проведенной работе.


РАЗДЕЛ I. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ КРИТЕРИЯ СОГЛАСИЯ

1.1 Критерии согласия Колмогорова и омега-квадрат в случае простой гипотезы

Простая гипотеза. Рассмотрим ситуацию, когда измеряемые данные являются числами, иначе говоря, одномерными случайными величинами. Распределение одномерных случайных величин может быть полностью описано указанием их функций распределения. И многие критерии согласия основаны на проверке близости теоретической и эмпирической (выборочной) функций распределения.

Предположим, что имеем выборку n. Обозначим истинную функцию распределения, которой подчиняются наблюдения, G(х), эмпирическую (выборочную) функцию распределения – F n (х), а гипотетическую функцию распределения – F(х). Тогда гипотеза Н о том, что истинная функция распределения есть F(х), записывается в виде Н: G(·) = F(·).

Как проверить гипотезу H? Если Н верна, то F n и F должны проявлять определенное сходство, и различие между ними должно убывать с увеличением n. Вследствие теоремы Бернулли F n (х) → F(х) при n → ∞. Для количественного выражения сходства функций F n иF используют различные способы.

Для выражения сходства функций можно использовать то или иное расстояние между этими функциями. Например, можно сравнить F n и F в равномерной метрике, т.е. рассмотреть величину:

(1.1)

Статистику D n называют статистикой Колмогорова.

Очевидно, что D n - случайная величина, поскольку ее значение зависит от случайного объекта F n . Если гипотеза Н 0 справедлива и n → ∞, то F n (x) → F(x) при всяком х. Поэтому естественно, что при этих условиях D n → 0. Если же гипотеза Н 0 неверна, то F n → G и G ≠ F, а потому sup -∞

Как всегда при проверке гипотезы, рассуждаем так, как если бы гипотеза была верна. Ясно, что Н 0 должна быть отвергнута, если полученное в эксперименте значение статистики D n кажется неправдоподобно большим. Но для этого надо знать, как распределена статистика D n при гипотезе Н: F= G при заданных n и G.

Замечательное свойство D n состоит в том, что если G = F, т.е. если гипотетическое распределение указано правильно, то закон распределения статистики D n оказывается одним и тем же для всех непрерывных функций G. Он зависит только от объема выборки n.

Доказательство этого факта основано на том, что статистика не изменяет своего значения при монотонных преобразованиях оси х. Таким преобразованием любое непрерывное распределение G можно превратить в равномерное на отрезке . При этом F n (x) перейдет в функцию распределения выборки из этого равномерного распределения.

При малых п для статистики D n при гипотезе Н 0 составлены таблицы процентных точек. При больших п распределение D n (при гипотезе Н 0) указывает найденная в 1933 г. А.Н.Колмогоровым предельная теорема. Она говорит о статистике

(поскольку сама величина D n → 0 при Н 0 , приходится умножать ее на неограниченно растущую величину, чтобы распределение стабилизировалось). Теорема Колмогорова утверждает, что при справедливости Н 0 и если G непрерывна:
(1.2)

Эта сумма очень легко считается в Maple. Для проверки простой гипотезы Н 0: G = F требуется по исходной выборке вычислить значение статистики D n . Для этого годится простая формула.

В настоящем п° мы рассмотрим один из вопросов, связанных с проверкой правдоподобия гипотез, а именно-вопрос о согласован­ности теоретического и статистического распределения.

Допустим, что данное статистическое распределение выравнено с помощью некоторой теоретической кривой f (х) (рис. 7.6.1). Как бы хорошо ни была подобрана теоретическая кривая, между нею и статистическим распределением неизбежны некоторые расхождения. Естественно возникает вопрос: объясняются ли эти расхождения только случайными обстоятельствами, связанными с ограниченным числом наблюдений, или они являются существенными и связаны с тем, что подобранная нами кривая плохо выравнивает данное ста­тистическое распределение. Для ответа на такой вопрос служат так называемые «критерии согласия».

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН



Идея применения критериев согласия заключается в следующем.

На основании данного статистического материала нам предстоит проверить гипотезу Н, состоящую в том, что случайная величина X подчиняется некоторому определенному закону распределения. Этот закон может быть задан в той или иной форме: например, в виде функции распределения F(x) или в виде плотности распределения f (х), или же в виде совокупности вероятностей p t , где p t - вероятность того, что величина X попадет в пределы l-то разряда.

Так как из этих форм функция распределения F (х) является наиболее общей и определяет собой любую другую, будем форму­лировать гипотезу Н, как состоящую в том, что величина X имеет функцию распределения ^(д:).

Для того чтобы принять или опровергнуть гипотезу Н, рассмот­рим некоторую величину U, характеризующую степень расхожде­ния теоретического и статистического распределений. Величина U может быть выбрана различными способами; например, в качестве U можно взять сумму квадратов отклонений теоретических вероятно­стей p t от соответствующих частот р* или же сумму тех"*же квад­ратов с некоторыми коэффициентами («весами»), или же максимальное отклонение статистической функции распределения F*(x) от теоре­тической F(x) и т. д. Допустим, что величина U выбрана тем или иным способом. Очевидно, это есть некоторая случайная величина. Закон распределения этой случайной величины зависит от закона распределения случайной величины X, над которой производились опыты, и от числа опытов п. Если гипотеза Н верна, то закон рас­пределения величины U определяется законом распределения вели­чины X (функцией F(x)) и числом п.

Допустим, что этот закон распределения нам известен. В рез­ультате данной серии опытов обнаружено, что выбранная нами мера



КРИТЕРИИ СОГЛАСИЯ


расхождения U приняла некоторое значение а. Спрашивается, можно ли объяснить это случайными причинами или же это расхождение слишком велико и указывает на наличие существенной разницы между теоретическим и статистическим распределениями и, следовательно, на непригодность гипотезы Н? Для ответа на этот вопрос предпо­ложим, что гипотеза Н верна, и вычислим в этом предположении вероятность того, что за счет случайных причин, связанных с недо­статочным объемом опытного материала, мера расхождения U ока­жется не меньше, чем наблюденное нами в опыте значение и, т. е. вычислим вероятность события:

Если эта вероятность весьма мала, то гипотезу Н следует отверг­нуть как мало правдоподобную; если же эта вероятность значительна, следует признать, что экспериментальные данные не противоречат гипотезе Н.

Возникает вопрос о том, каким же способом следует выбирать меру расхождения £/? Оказывается, что при некоторых способах ее выбора закон распределения величины U обладает весьма простыми свойствами и при достаточно большом п практически не зависит от функции F(x). Именно такими мерами расхождения и пользуются в математической статистике в качестве критериев согласия.

Рассмотрим один из наиболее часто применяемых критериев со­гласия- так называемый «критерий у?» Пирсона.

Предположим, что произведено га независимых опытов, в каждом из которых случайная величина X приняла определенное значение. Результаты опытов сведены в k разрядов и оформлены в виде ста­тистического ряда.