Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Технология SLS. История создания и развития

Метод Selective Laser Sintering или выборочное (селективное) лазерное спекание , был придуман доктором Карлом Декартом совместно с группой студентов в университете Остина, штат Техас. Впервые он был запатентован в 1989 году фирмой DTM Corporation, которая в 2001 году была куплена компанией 3D Systems.

Что такое лазерное спекание?

Технологический процесс состоит из двух этапов: вначале ровный тонкий слой порошка равномерно размещается по всей рабочей площадке, после чего включается лазер и запекает области, который соответствуют срезу воображаемого объекта. Затем модель опускается вниз на расстояние, равное толщине слоя, и алгоритм повторяется, пока процесс не дойдет до самой верхней точки модели.

На каждом этапе SLS-печати можно выбирать, как лучше действовать. Порошок может распыляться или наноситься валиком. Запекание может проводиться только на участке, который соответствует границе перехода, или плавят по всей глубине модели. Кроме того, само запекание может варьироваться по силе, температуре и длительности.

Важная особенность выборочного (селективного) лазерного спекания – отсутствие необходимости в поддерживающих структурах, так как излишек окружающего порошка по всему объему не дает модели разрушиться, пока окончательная форма еще не обретена и не достигнута прочность целевого объекта.

Материалы

Перечень используемых материалов постепенно разрастается, на сегодняшний день могут применяться в качестве порошка частицы:

  • пластика;
  • металла;
  • керамики;
  • стекла;
  • нейлона.

Готовое изделие часто обрабатывают. Например, погружают в специальную печь для выжигания технологических полимеров, которые нужны на этапе спекания, если используют порошки композитных металлов. Также возможна полировка для удаления видимых переходов между слоями. Технологии и материалы непрерывно совершенствуются, благодаря чему этап финишной обработки становится всё менее актуальным.

Основные производители SLS-принтеров – EOS (Германия) и 3D Systems (США). Они предлагают серийные установки для создания самых больших объектов: 730×380×580мм и 550×550×750мм соответственно. Однако в 2011 году в китайском университете Хуачжонг была построена самая большая в мире SLS-машина, способная синтезировать объекты размером 1200×1200мм.


В этом обзоре я попытался в популярной форме привести основные сведения о производстве металлических изделий методом лазерного аддитивного производства – сравнительно новом и интересном технологическом методе, возникшем в конце 80-х и ставшем в наши дни перспективной технологией для мелкосерийного или единичного производства в области медицины, самолето- и ракетостроения.
Кратко описать принцип работы установки для аддитивного производства с помощью лазерного излучения можно следующим образом. Устройство для нанесения и выравнивания слоя порошка снимает слой порошка с питателя и равномерным слоем распределяет его по поверхности подложки. После чего лазерный луч сканирует поверхность данного слоя порошка и путем оплавления или спекания формирует изделие. По окончанию сканирования порошкового слоя платформа с изготавливаемым изделием опускается на толщину наносимого слоя, а платформа с порошком поднимается, и процесс нанесения слоя порошка и сканирования повторяется. После завершения процесса платформа с изделием поднимается и очищается от неиспользованного порошка.

Одной из основных частей в установках аддитивного производства является лазерная система, в которой используются CO 2 , Nd:YAG, иттербий волоконный или дисковый лазеры. Установлено, что использование лазеров с длиной волны 1-1,1 мкм для нагрева металлов и карбидов предпочтительнее, поскольку они на 25-65% лучше поглощают генерируемое лазером излучение. В тоже время, использование CO 2 лазера с длиной волны 10,64 мкм наиболее лучше подходит для таких материалов, как полимеры и оксидная керамика. Более высокая абсорбционная способность позволяет увеличить глубину проплавления и в более широких пределах варьировать параметрами процесса. Обычно лазеры, используемые в аддитивном производстве, работают в непрерывном режиме. По сравнению с ними применение лазеров работающих в импульсном режиме и в модулированной добротности за счет их большой энергии импульса и короткой продолжительности импульса (наносекунды) даёт возможность улучшить прочность связи между слоями и уменьшить зону термического воздействия. В заключение можно отметить, что характеристики используемых лазерных систем лежат в таких пределах: мощность лазера – 50-500 Вт, скорость сканирования до 2 м/с, скорость позиционирования до 7 м/с, диаметр фокусированного пятна – 35-400 мкм.

Помимо лазера как источник нагрева порошка может быть использован электронно-лучевой нагрев. Этот вариант фирма Arcam предложила и реализовала в своих установках в 1997 г. Установка с электронно-лучевой пушкой характеризуется отсутствием подвижных частей, так как электронный луч фокусируется и направляется с помощью магнитного поля и дефлекторов, а создание в камере вакуума положительно сказывается на качестве изделий.

Одним из важных условий при аддитивном производстве является создание защитной среды предотвращающей окисление порошка. Для выполнения этого условия используют аргон или азот. Однако применение азота как защитного газа ограничено, что связанно с возможностью образования нитридов (например, AlN, TiN при изготовлении изделий из алюминиевых и титановых сплавов), которые приводят к понижению пластичности материала.

Методы лазерного аддитивного производства по особенностям процесса уплотнения материала можно разделить на селективное лазерное спекание (Selective Laser Sintering (SLS)), непрямое лазерное спекание металлов (Indirect Laser Metal Sintering (ILMS)), прямое лазерное спекание металлов (Direct Laser Metal Sintering (DLMS)) и селективное лазерное плавление (Selective Laser Melting (SLM)). В первом варианте уплотнение слоя порошка происходит за счет твердофазного спекания. Во втором – за счет пропитки связкой пористого каркаса ранее сформированного лазерным излучением. В основе прямого лазерного спекания металлов лежит уплотнение по механизму жидкофазного спекания за счет плавления легкоплавкого компонента в порошковой смеси. В последнем варианте уплотнение происходит за счет полного плавления и растекания расплава. Стоит отметить, что эта классификация не является универсальной, поскольку в одном типе процесса аддитивного производства могут проявляться механизмы уплотнения, которые характерны для других процессов. Например, при DLMS и SLM может наблюдаться твердофазное спекание, которое имеет место при SLS, тогда как при SLM может происходить жидкофазное спекание, которое более характерно для DLMS.

Селективное лазерное спекание (SLS)

Твердофазное селективное лазерное спекание не получило широкого распространения, поскольку для более полного протекания объемной и поверхностной диффузии, вязкого течения и других процессов, имеющих место при спекании порошка, требуется относительно длительная выдержка под лазерным излучением. Это приводит к длительной работе лазера и малой производительности процесса, что делает этот процесс экономически не целесообразным. Помимо этого, возникают сложности с поддержанием температуры процесса в интервале между точкой плавления и температурой твердофазного спекания. Преимуществом твердофазного селективного лазерного спекания является возможность использования более широкого круга материалов для изготовления изделий.

Непрямое лазерное спекание металлов (ILMS)

Процесс, получивший название «непрямое лазерное спекание металлов» был разработан компанией DTMcorp of Austin в 1995 г., которая с 2001 г. принадлежит компании 3D Systems. В ILMS процессе используют смесь порошка и полимера или порошок покрытый полимером, где полимер выступает в роли связки и обеспечивает необходимую прочность для проведения дальнейшей термической обработки. На стадии термической обработки проводится отгонка полимера, спекание каркаса и пропитка пористого каркаса металлом-связкой, в результате которой получается готовое изделие.

Для ILMS можно использовать порошки, как металлов, так и керамики или их смесей. Приготовление смеси порошка с полимером проводят механическим смешиванием, при этом содержание полимера составляет около 2-3% (по массе), а в случае использования порошка покрытым полимером, толщина слоя на поверхности частицы составляет около 5 мкм. В качестве связки используют эпоксидные смолы, жидкое стекло, полиамиды и другие полимеры. Температура отгонки полимера определяется температурой его плавления и разложения и в среднем составляет 400-650 o С. После отгонки полимера пористость изделия перед пропиткой составляет около 40%. При пропитке печь нагревают на 100-200 0 С выше точки плавления пропитывающего материала, поскольку с повышением температуры уменьшается краевой угол смачивания и понижается вязкость расплава, что благоприятно влияет на процесс пропитки. Обычно пропитку будущих изделий проводят в засыпке из оксида алюминия, которая играет роль поддерживающего каркаса, поскольку в период от отгонки полимера до образования прочных межчастичных контактов существует опасность разрушения или деформации изделия. Защиту от окисления организуют с помощью создания в печи инертной или восстановительной сред. Для пропитки можно использовать довольно разнообразные металлы и сплавы, которые удовлетворяют следующим условиям. Материал для пропитки должен характеризоваться полным отсутствием или незначительным межфазным взаимодействием, малым краевым углом смачивания и иметь температуру плавления ниже, чем у основы. Например, в случае если компоненты взаимодействую между собой, то в процессе пропитки могут происходить нежелательные процессы, такие как образование более тугоплавких соединений или твердых растворов, что может привести к остановке процесса пропитки или негативно сказаться на свойствах и размерах изделия. Обычно для пропитки металлического каркаса используют бронзу, при этом усадка изделия составляет 2-5%.

Метод селективного лазерного спекания (SLS) был разработан и запатентован доктором Карлом Декартом (Carl Deckard) в Техасском университете в Остине, в 1986 году. Метод заключается в послойном спекании лазерным излучением порошкового материала. В качестве порошкового материала может использоваться пластик, металл, керамика, стекло.

На рабочую поверхность наносится слой порошка и лазером, в соответствии с 3D моделью спекается первый слой. Затем рабочая поверхность опускается на толщину слоя, насыпается новый слой порошка, лазер выжигает второй слой объекта поверх первого. За счет высокой температуры в рабочей камере, происходит склеивание слоев. Таким образом цикл повторяется: слой - запекли - опустили - новый слой - запекли - опустили и т.д. Полученный объект извлекается из камеры и очищается от порошка. Если это необходимо, то производится обработка изделия.

Прототипы, изготовленные при помощи SLS-технологии, обладают хорошими механическими свойствами и вполне могут быть использованы для создания полнофункциональных изделий. Наиболее популярным материалом для SLS печати является порошковый полиамид. Самые известные производители SLS-машин EOS (Германия) и 3DSystems (США). Метод SLS допускает печать из различных материалов, в том числе и довольно прочных: термопластичные полимеры, стекло, керамика и даже металл. Это позволяет изготавливать на них не только прототипы, но и вполне работоспособные изделия. Модели, изготовленные по технологии селективного лазерного спекания, считаются самыми прочными среди 3D напечатанных изделий.

Для использования прочных материалов необходим мощный лазер. В 2011 году Маркус Кайсер показал интересный проект солнечного 3D-принтера. Вместо спекаемого порошка он использовал песок. Вместо лазерных лучей использовал большую линзу Френеля, которая концентрировала солнце в точку и плавила песок. В качестве насыпающего и выравнивающего устройства выступал сам автор проекта. Координатная система принтера и компьютер работали от солнечных батарей. У выборочного лазерного спекания (еще одно название SLS) есть одна важная особенность - отсутствие необходимости в поддержке изделия, так как окружающий порошок не дает модели разрушиться, пока окончательная форма еще не обретена и не достигнута прочность целевого объекта. Еще одним плюсом порошкообразного сырья является возможность печати сложных фигур без создания поддержки. Завершающий этап печати это финишная обработка. Например, погружение в специальную печь для выжигания технологических полимеров, которые нужны на этапе спекания, если использовались порошки композитных металлов. Также возможна полировка для удаления видимых переходов между слоями. Технологии и материалы непрерывно совершенствуются и, благодаря этому, этап финишной обработки минимизируется.

К недостаткам SLS принтеров можно отнести большое время подготовки к работе, требуемое для нагревания порошка и поддержания температуры. Разрешение печати меньше, чем при использовании SLA технологии (минимальная толщина слоя — 0,1-0,15 мм), зато скорость в несколько раз выше (до 35 мм/час).

Двумя основными компаниями, занимающимися SLS - технологией являются американская компания DTM и немецкая компания EOS. В нижеприведенной таблице 3.5 показаны точностные данные по трем координатам и толщина слоя в зависимости от используемой установки. Компания DTM с установками Sinterstation превзошла своего конкурента компанию EOS. Точность построения модели зависит от геометрии модели, а, следовательно, от позиционирования (размещения) строящейся модели в рабочей камере. Также точность построения ограничена диаметром луча лазера. При методе SLS используются два различных материала в виде порошка пластмассы или металла. Например, полистирол, использующийся для изготовления прототипов, может работать (расплавляться) при относительно низких температурах, что способствует незначительной усадке, и, следовательно, более высокой точности. А использование металлического порошка под названием DirectMetal, основанного на бронзе, позволяет обеспечивать размеры изделия с погрешностью, не превышающую 0,05 % от размера.

В таблице 3.5 представлены данные по точности изготовления изделий и толщине слоя в зависимости от типа установки.

Точность X-Y

Точность Z

Толщина слоя

Sinterstation 2000

Sinterstation 2500

компания

Sinterstation 2500plus

компания

Принтер: EOSINT P395
Размер камеры: 340 х 340 х 620 мм
Толщина слоя: 120 мкм

Эта технология с одной стороны, кардинально отличается от метода послойного наплавления, с другой стороны, имеет много общего. Как и там, модель создается послойно на основе компьютерного описания. Однако ключевым принципом здесь является применение порошка, а не плавящейся нити. Порошок напыляется равномерным слоем по всей площади, после чего лазер запекает только те участки, которые соответствуют сечению модели на этом слое на этой высоте.

Метод был придуман группой студентов во главе с доктором Карлом Декартом в Университете Остина, штат Техас. Впервые он был запатентован в 1989 году фирмой DTM Corporation, которая в 2001 году была куплена компанией 3D Systems.

На сегодняшний день разнообразие материалов, применяемых в качестве порошка, поистине велико: частицы пластика, металла, керамики, стекла, нейлона.

Итак, технология состоит из двух параллельных процессов: вначале подготавливается ровный тонкий слой порошка по всей возможной площади. Здесь не обойтись без валика, подающего и разравнивающего порошок, как каток. После этого включается мощный лазер и запекает те области, который соответствуют срезу воображаемого объекта. Затем модель опускается вниз на расстояние, равное толщине слоя, и алгоритм повторяется, пока процесс не дойдет до самой верхней точки модели.

Как и следует ожидать, существует много вариантов на каждом этапе такого производства. Существует два алгоритма запекания: в одном случае плавят только те участки, которые соответствуют границе перехода, в другом — плавят по всей глубине модели. Кроме того, само запекание может варьироваться по силе, температуре и длительности.

Важная особенность выборочного (селективного) лазерного спекания — отсутствие необходимости в поддерживающих структурах, так как излишек окружающего порошка по всему объему не дает модели разрушиться, пока окончательная форма еще не обретена и не достигнута прочность целевого объекта.

Последний этап — финишная обработка. Например, погружение в специальную печь для выжигания технологических полимеров, которые нужны на этапе спекания, если использовались порошки композитных металлов. Также возможна полировка для удаления видимых переходов между слоями. Технологии и материалы непрерывно совершенствуются и, благодаря этому, этап финишной обработки минимизируется.





Одна из технологий трехмерной печати – это селективное лазерное спекание или Sls печать . Впервые эту технологию применили в 1989 году. Ее используют и до сих пор. Суть метода состоит в том, что частицы порошка фотополимера спекаются выборочно.

Весь процесс можно разделить на два этапа. На первом рабочий материал раскладывается на рабочей площадке равномерным слоем одинаковой толщины. Затем лазер начинает свою работу: он воздействует на частицы, нагревая их настолько, чтобы они соединялись друг с другом. Заказывая печать на 3d принтере цена на которую будет зависеть от сложности детали и используемого материала, непременно обращайтесь лишь в солидные компании, в которых работают грамотные специалисты.

В процессе воздействия спекаются только те области, которые соответствуют срезам детали. Затем площадка с порошком опускается вниз ровно настолько, чтобы лазер мог обработать следующий миллиметр среза. Таким образом площадка с будущей деталью перемещается вниз до тех пор, пока не будет обработана вся поверхность, и деталь не получит четкие контуры. Каждый раз при перемещении добавляется новый слой порошка.









Особенность под названием sls печать в том, что на любом из этапов можно изменять настройки, управляя процессом. Например, можно по-разному добавлять порошок: его распыляют или наносят валиком. Можно изменять область запекания: выбирают или границу перехода или плавят по всей модели. Да и сам процесс запекания тоже можно изменять: регулировать температуру, интенсивность и длительность.

3d печать sls имеет одну важную особенность, которая состоит в том, что нет необходимости в использовании поддерживающих устройств. В данной технологии роль поддерживающих структур играет лишнее количество порошка, который остается после запекания. Он поддерживает объект до тех пор, пока он не наберет достаточной прочности.

Какие же материалы можно использовать для метода селективного лазерного спекания? Сегодня круг возможностей существенно расширился и включает в себя:

  • нейлон;
  • пластик;
  • керамику;
  • стекло;
  • металл.

Важно, что все они должны быть в виде порошка с очень мелкими частицами. В зависимости от выбранного материала получают гладкую или слегка шероховатую поверхность.

Изделие можно подвергать дальнейшей обработке, например, выжиганию технических полимеров. Этот процесс необходим, если для изготовления объекта используют композитные материалы. Иногда детали требуют полировки. Детали, для изготовления которых применялась 3д печать по sls-технологии , применяют в авиа- или машиностроении, в космонавтике. Кроме того, по такому методу изготавливают предметы искусства и декора.