Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Движение тела с переменной массой. Уравнение Мещерского

Движение тела с переменной массой. Уравнение Мещерского

Требуется вывести искусственный спутник Земли массой на круговую орбиту высотой 250 км. Располагаемый двигатель имеетудельный импульсм/c. Коэффициент– это значит, что масса конструкции составляет 10 % от массы заправленной ракеты (ступени). Определим массуракеты-носителя.

Первая космическая скоростьдля выбранной орбиты составляет 7759,4 м/с, к которой добавляются предполагаемые потери от гравитации 600 м/c (это, как можно видеть, меньше, чем потери, приведённые в таблице 1, но и орбита, которую предстоит достичь – вдвое ниже). Характеристическая скорость, таким образом, равнам/c (остальными потерями в первом приближении можно пренебречь). При таких параметрах величина. Неравенство (4), очевидно, не выполняется, следовательно, одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно.

Расчёт для двухступенчатой ракеты.

Разделим пополам характеристическую скорость, что составит характеристическую скорость для каждой из ступеней двухступенчатой ракеты м/c. На этот раз, что удовлетворяет критерию достижимости (4), и, подставляя в формулы (3) и (2) значения,

для 2-й ступени получаем:

т;

т;

полная масса 2-й ступени составляет 55,9 т.

Для 1-й ступени к массе полезной нагрузки добавляется полная масса 2-й ступени, и после соответствующей подстановки получаем:

т;

полная масса 1-й ступени составляет 368,1 т;

общая масса двухступенчатой ракеты с полезным грузом составит 10 + 55,9 +368,1 = 434 т.

Аналогичным образом выполняются расчёты для большего количества ступеней. В результате получаем:

Стартовая масса трёхступенчатой ракеты составит 323,1 т.

Четырёхступенчатой – 294,2 т.

Пятиступенчатой – 281 т.

На этом примере видно, как оправдывается многоступенчатостьв ракетостроении: при той же конечной скорости ракета с большим числом ступеней имеет меньшую массу.

Следует отметить, что эти результаты получены в предположении, что коэффициент конструктивного совершенства ракеты остаётся постоянным, независимо от количества ступеней. Более тщательное рассмотрение показывает, что это – сильное упрощение. Ступени соединяются между собой специальными секциями – переходниками – несущими конструкциями. Каждая из них должна выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значениеперегрузки, которую испытывает ракета на всех участках полёта, на которых переходник входит в состав ракеты. С увеличением числа ступеней их суммарная масса уменьшается, в то время как количество и суммарная масса переходников возрастают, что ведёт к снижению коэффициента, а, вместе с ним, и положительного эффектамногоступенчатости. В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

Анализ баллистических возможностей ракет говорит о следующем:

При этом приращения скорости, сообщаемые ступенями для двух- и трехступенчатых ракет, имеют различные пропорции (табл. 2).

Оптимальное соотношение масс ступеней зависит от коэффициента тяговооруженности, представляющего собой отношение тяги двигателя к начальной массе ракеты. Поэтому для анализа влияния различных параметров ракеты на оптимальное соотношение масс ступеней обычно рассматривают скорость полета, определяемую с учетом величины коэффициента тяговооруженности. При баллистическом проектировании в качестве предварительных можно принимать соотношения масс ступеней, как в табл. 3.

Такого рода расчёты выполняются не только на первом этапе проектирования – при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции. Формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке, и т.д., с целью контроля достижения ракетой заданной скорости.

2.1. Идеальная скорость и массовые характеристики ракеты

Идеальная скорость - скорость, которую приобрел бы летательный аппарат, двигаясь прямолинейно, если бы весь запас энергии, находящийся на его борту, был бы израсходован на ускорение.

где: , - действительная скорость и её потери;

dV rp , d У Аяр , dV ynp - потери скорости гравитационные, аэродинамиче­ские и на управление, соответственно.

Первая космическая скорость V K , = 7900 м / c

V К 1 + dV пк 1 = V К2 = 10200 м / с

Идеальная скорость характеризует запас топлива на борту ра­кеты, необходимый для проведения определенного маневра.

Массовая характеристика ракеты

Массовые модели одно и двухступенчатых ракет приведены на рис. 8.

Рис.8

Условные обозначения: о. к, п, п.ф., коне, т, - массы стартовая, конечная, полезная, полезная фик­тивная, конструкции и топлива, соответственно.

Масса ракеты, находящаяся над ступенью, также называется полезной фиктивной нагрузкой.

Одноступенчатая ракета называется субракетой.

Количество субракет определяется требуемой дальностью доставки полезного груза. Так при использовании ЖРДУ для обеспечения дальности полёта до 1000 км используется 1 ступень, при дальности 1000 - 3000 км - 2 ступени, а при дальности более 3000 км - 3 ступени.

2.2. Относительные массовые характеристики субракет

1. Относительная масса полезного груза

2. Относительная масса конструкции

3.Относительная массатоплива

4.Число Циолковского - Z и модифицированное число Циолковско­ го -z:

2.3. Формула Циолковского

Предназначена для определения идеальной скорости ракеты. При выводе формулы Циолковского примем следующие допущения:

ракета летит прямолинейно;

гравитационные силы не рассматриваются;

давление окружающей среды отсутствует.

Рассмотрим расчётную схему исследуемого процесса, рис.9.

Согласно первого закона Ньютона:

Согласно формуле тяги:

Знак «-» в вышеприведенной формуле указывает на снижение массы двигательной установки М за счет уменьшения массы топлива.



Если конструкция космического аппарата состоит из N субракет и при этом значения числа Циолковского и эквивалентной скорости для них одинако­вы, то изменение идеальной скорости можно рассчитать по формуле:

3. Рабочий процесс в химических ракетных двигателях

3.1. Аэрогазодинамический нагрев в полёте

При движении газа с гиперзвуковыми скоростями М>5 на процесс теп­лообмена существенное влияние оказывают явления диссоциации, рекомбина­ции и ионизации.

Диссоциация - процесс разложения молекулярных соединений и ато­мов на их составляющие. Процесс сопровождается значительным поглощением тепла.

Рекомбинация - процесс обратный диссоциации; происходит с выде­лением тепла.

Существенная интенсификация данного процесса наблюдается при на­личии катализатора, в качестве которого можно рассматривать поверхность летательного аппарата (ЛА).

Ионизация - процесс отрыва свободных электронов от атомов.

При М<20 ионизируется менее 1% воздуха. Поэтому при указанных режимах полета влияние ионизации на теплообмен можно не учитывать.

В случае исследование теплообмена между поверхностью ЛА и газо­вым потоком при М<20 могут быть использованы зависимости, полученные в курсе «Термодинамика газовых потоков», с учетом влияния рассмотренных процессов на теплофизические свойства окружающей среды.

При движении ЛА с космическими или околокосмическими скоростя­ми в сильно разреженных слоях атмосферы протяжённость свободного пробе­га молекулы соизмерима, а в некоторых случаях превышает протяжённость летательного аппарата.

Такая зона полета называется областью свободномолекулярного пото­ка. При этом у поверхности ЛА отсутствует пограничный слой и математиче­ские зависимости полученные в курсе «Термодинамика газовых потоков», ста­новятся не применимы.

При полёте в области свободно молекулярного потока определяющим является критерий Кнудсена:

где: М и Re- критерии Маха и Рейнольдса, соответственно; к - показатель адиабаты.

В области свободномолекулярного потока величина критерия Кнудсе­на Кn>10.

При 0,1>Кn>0,01 у поверхности ЛА образуется тонкий пограничный слой скользящий вдоль неё, в котором наблюдается резкое изменение парамет­ров потока.

Процесс соударения между потоком и поверхностью ЛА характеризу­ется коэффициентом аккомодации А. Его величина зависит от параметров по­тока и состояния поверхности; характеризует относительную энергию, переда­ваемую от молекулы к поверхности ЛА при их соударении.

При проведении технических расчетов величина А принимается равной 0,9.

Процесс теплообмена в области свободно молекулярного потока с дос­таточной степенью точности характеризуется уравнением:

Характеризует отношение скорости полёта ЛА к возможной скорости молекулы;

Критерий Прандтля.

Циолковский попытался сделать математический расчёт движения такой ракеты в свободном пространстве. Понятно, что в ходе полёта масса ракеты из-за расхода топлива будет постепенно уменьшаться. Циолковский учёл это и вывел формулу, позволяющую определить скорость ракеты при постепенном изменении её массы. Эта формула называется теперь формулой Циолковского. Благодаря ей впервые стало возможным путём вычислений заранее определять лётные характеристики ракет. Позже Циолковский попробовал разрешить более сложную задачу - рассчитать движение ракеты при её вертикальном старте с поверхности Земли, то есть тогда, когда на неё воздействует гравитация и сила лобового сопротивления воздуха. Выведенные им формулы не учитывают многих обстоятельств, с которыми столкнулась позднее ракетодинамика (например, Циолковский не имел ещё представления о силах сопротивления при сверхзвуковых скоростях, движение ракеты он рассматривал как прямолинейное, а влияние систем управления на лётный характеристики вообще не учитывалось). Поэтому в наше время расчёты Циолковского можно рассматривать лишь как первое (грубое) приближение, но суть происходящего отражена в них верно.

Управлять полётом ракеты Циолковский предполагал или при помощи графитовых рулей, помещаемых в струе газа вблизи раструба (сопла) реактивного двигателя, или поворачивая сам раструб. Чтобы уменьшить отрицательное воздействие перегрузок на космонавтов при старте ракеты, Циолковский предлагал погружать их в жидкость равной плотности. Позже Циолковский пришёл к очень плодотворной идее многоступенчатых ракет. Он же заложил основы расчёта полёта этих ракет. (В 1926 г. Циолковский разработал теорию полёта двухступенчатой ракеты с последовательным отделением ступеней, а в 1929 г. - общую теорию полёта многоступенчатой ракеты.)

Но при всём увлечении Циолковского ракетодинамикой, ракета всегда оставалась для него только средством для преодоления земного притяжения и выхода в космос. Он много размышлял над теми проблемами, которые встретит человек, оказавшись в межпланетном пространстве и на других планетах, поэтому его с полным основанием можно считать также основоположником космонавтики. Многие предвидения Циолковского в этой области оказались чрезвычайно точными. Он, к примеру, красочно и очень верно описал ощущения, которые будет испытывать человек при старте ракеты и при выходе её в космическое пространство, в также то. Что он там увидит. Фантазия его далеко опережала своё время. Циолковский был твёрдо убеждён, что выход человечества в космос совершенно неизбежен и что именно освоение космоса поможет решить многие современные проблемы землян. В своих книгах он описывал целые кольца космических поселений на громадных орбитальных станциях будущего, расположенных вокруг солнца. Большую роль должны были играть на них космические оранжереи, так как в космосе можно собирать более значительные урожаи, чем на Земле. Он считал. Что обилие дешёвой солнечной энергии позволит человеку переместить в космос многие промышленные предприятия. «Завоевание солнечной системы, - писал Циолковский, - даст не только энергию и жизнь, которые в два миллиарда раз будут обильнее земной энергии и жизни, но и простор ещё более обильный».

Идеи Циолковского намного обогнали своё время. Современники не понимали его работ, правительство не спешило оказать ему материальную поддержку. В старости учёный с горечью писал: «Тяжело работать в одиночку многие годы при неблагоприятных условиях и не видеть ниоткуда ни просвета, ни поддержки». И в самом деле, исследования его протекали в очень тяжёлых условиях: мизерное жалование, большая семья, тесная и неудобная квартира, постоянная нужда, насмешки обывателей - всё это сопутствовало Циолковскому на протяжении всей его жизни. Многие свои книги Циолковскому пришлось публиковать за свой счёт и бесплатно рассылать по библиотекам.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от, проверенной 23 февраля 2018; проверки требуют.

Однако первыми уравнение движения тела с переменной массой решили английские исследователи У. Мур (англ. William Moore ) в 1810-1811 годах, а также П. Г. Тэйт и У. Дж. Стил из Кембриджского университета в 1856 году.

Формула Циолковского может быть получена путём интегрирования дифференциального уравнения Мещерского для материальной точки переменной массы :

Как видно из таблицы, гравитационная составляющая является наибольшей в общей величине потерь. Гравитационные потери возникают из-за того, что ракета, стартуя вертикально, не только разгоняется, но и набирает высоту, преодолевая тяготение Земли, и на это также расходуется топливо. Величина этих потерь вычисляется по формуле:

Аэродинамические потери вызваны сопротивлением воздушной среды при движении ракеты в ней и рассчитываются по формуле:

Основные потери от сопротивления воздуха также приходятся на участок работы 1-й ступени ракеты, так как этот участок проходит в нижних, наиболее плотных слоях атмосферы.

Корабль должен быть выведен на орбиту со строго определёнными параметрами, для этого система управления на активном участке полёта разворачивает ракету по определённой программе, при этом направление тяги двигателя отклоняется от текущего направления движения ракеты, а это влечёт за собой потери скорости на управление, которые рассчитываются по формуле:

Наибольшая часть потерь на управление ракеты приходится на участок полёта 2-й ступени, поскольку именно на этом участке происходит переход от вертикального полёта в горизонтальный, и вектор тяги двигателя в наибольшей степени отклоняется по направлению от вектора скорости ракеты.

Выведенная в конце XIX века, формула Циолковского и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Это уравнение дает отношение начальной массы ракеты к её конечной массе при заданных значениях конечной скорости ракеты и удельного импульса .

Масса конструкции ракеты в большом диапазоне значений зависит от массы топлива почти линейно: чем больше запас топлива, тем больше размеры и масса ёмкостей для его хранения, больше масса несущих элементов конструкции, мощнее (следовательно, массивнее) двигательная установка. Выразим эту зависимость в виде:

одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно

Данный расчет является упрощенным и не учитывает затрат на изменение потенциальной энергии тела, и при его прямом применении возникает иллюзия, что затраты уменьшаются с ростом высоты орбиты. В реальности без учета потерь на сопротивление атмосферы и гравитационных потерь за время вывода на орбиту потребная скорость (мгновенно приданная телу на уровне нулевой высоты над поверхностью) оказывается выше. Её можно примерно определить, применив закон сохранения механической энергии (гипотетическая эллиптическая орбита с перицентром в точке касания Земли и апоцентром на высоте целевой орбиты):

Это приближение не учитывает импульсов на переход с круговой орбиты Земли на эллиптическую и с эллиптической на новую круговую, а также применимо только к хомановским переходам (то есть применение для параболических и гиперболических переходов не работает), но много точнее, чем просто принимать за потребную скорость первую космическую для широкого диапазона высот НОО.

Тогда на высоте 250 км потребная скорость для вывода составит 8,063 м/с, а не 7,764, а для ГСО (35 786 км над уровнем Земли) - уже 10,762 м/с, а не 3,077 м/с, как было бы при игнорировании затрат на изменение потенциальной энергии.

Для первой ступени к массе полезной нагрузки добавляется полная масса второй ступени; после соответствующей подстановки получаем:

Таким образом, полная масса первой ступени составляет 368,1 т, а общая масса двухступенчатой ракеты с полезным грузом составит 10+55,9+368,1 = 434 т. Аналогичным образом выполняются расчёты для бо́льшего количества ступеней. В результате получаем, что стартовая масса трёхступенчатой ракеты составит 323,1 т, четырёхступенчатой - 294,2 т, пятиступенчатой - 281 т.

На этом примере видно, как оправдывается многоступенчатость в ракетостроении: при той же конечной скорости ракета с бо́льшим числом ступеней имеет меньшую массу.

Такого рода расчёты выполняются не только на первом этапе проектирования - при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции, формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке , и т. д., чтобы контролировать достижение ракетой заданной скорости.

Первая задача Циолковского

Рассмотрим движение ракеты в безвоздушном пространстве при отсутствии гравитационного поля. Движение в этом случае будет происходить только под действием реактивной силы.

Какую скорость V приобретет ракета к моменту, когда на­чальная масса М 0 уменьшится до конечного значения М к (до пол­ной выработки топлива)? Это – первая задача Циолковского.

Запишем уравнение Мещерского:

После разделения переменных получим:

Т.к. , после интегрирования получим:

Значение С получим из начальных условий: при t = 0 скорость V = V 0 =0 и масса М = М 0 .

­Откуда: .

Подставив С в выражение для V , окончательно получим:

где: М – текущая масса ракеты;

– относительная текущая масса ракеты.

Это формула Циолковского для определения идеальной скорости одноступенчатой ракеты, которая характеризует энергетические ха­рактеристики собственно ракеты.

По мере выработки топлива масса М и соответственно m уменьшаются, а скорость V – возрастает.

В частности, при значении скорость V ракеты всегда равна эффективной скорости w e истечения (см. рис. 2.6).

Рис. 2.6. Изменение скорости V в зависимости от m для различных w e

Когда топливо будет полностью выработано, а двигатель выключен, скорость V достигнет своего наибольшего конечного V к значения:

где: относительная конечная масса ;

M к , M 0 – конечная и начальная масса ракеты соответственно;

число Циолковского.

Другая форма записи конечной скорости:

где: М Т – масса топлива;

относительная масса топлива .

Рассмотрим, от каких параметров зависит путь S К , пройденный ракетой в идеальных условиях за время t К .

Очевидно: .

При текущая масса М ракеты линейно зависит от времени:

Поэтому: .

Тогда после замены переменных:

или после интегрирования:

.

Величину, обратную n 0 называют тяговооруженностью :

Выясним, какое влияние оказывает тяговооруженность на время t работы двигателя.

Выше отмечалось, что при линейном законе изменения массы ЛА:

Учитывая, что:

Из последних двух выражений следует, что для ракет с одинаковыми скоростями истечения равным значениям m может соответствовать разное время работы двигателя: чем больше начальная тяговооруженность, тем меньше время.

На рис. 2.7 дана зависимость V = f (t ) для и различных, значений начальной тяговооруженности. Равные значения скорости, очевидно, имеют место при равные m.

Рис. 2.7. Зависимость скорости V от времени t полета для различных значений начальной тяговоорукенности



Увеличение конечной идеальной скорости ракеты можно достичь либо увеличением эффективной скорость истечения продуктов сгорания, либо уменьшением относи­тельной конечной массы m К (увеличением числа Z Циолковско­го). Закон же расхода топлива, равно как и абсолютные зна­чения начальной и конечной масс, не оказывают влияния на приобретенную скорость.

Путь, проходимый ракетой, зависит не только от и но и обратно пропорционален тяговооруженности, т.е. стартовому ускорению. Этот факт объясняется тем, что с увеличением, уменьшается время t работы двигателя, а следовательно, снижаются гравитацион­ные потери скорости. В итоге это проводит к увеличению конечной скорости ракеты, движущейся в поле тя­готения планеты, а, следовательно, растет и проходимый ею путь.

Основная задача ракеты – сообщить заданному полезному грузу определенную скорость. В зависимости от полезного груза и не­обходимой скорости назначается и запас топлива. Чем больше груз и конечная скорость, тем больший запас топлива M Т должен нахо­диться на борту, а следовательно, тем большим сказывается стар­товый вес ракеты, тем больше необходима тяга двигателя, что приводит к увеличению веса двигательной установки и веса всей конструкции ракеты в целом:

­ M П.Г и ­V К ® ­M Т ® М 0 ® ­R ® ­M констр. .

Из формулы Циолковского (61) следует, что увеличение конечной скорости ракеты может быть достигнуто либо увеличением эффективной скорости истечения продуктов сгорания из сопла ракетного двигателя, либо уменьшением относительной конечной массы. Реальный предел для существующих конструкций на сегодня м а максимально достижимое для химических ракетгых двигателей значение = 4400 м/с (топливо – ""водород – кислород"). Тогда:

Далее будет показано, что для выведения полезного груза на низкую круговую орбиту Земли необходима характеристическая скорость V x = 9400 м/с (необходимая фактическая скорость V факт = 7800 м/с). Разность между ними – = 1600м/с – это суммарные потери скорости, обусловленные совокупностью потерь скорости из-за отличий реальных условий полета от идеа­льных.

Приведенные количественные опенки свидетельствуют, что достижение первой космической скорости для создания ИСЗ Земли находится на пределе реальных возможностей одноступенчатых ра­кет с двигателем на химическом топливе. Такая одноступенча­тая ракета уже создана в Японии – в 1986 г. с ее помощью был осуществлен запуск ИСЗ массой » 800 кг на круговую орби­ту Земли. Добиться этого удалось за счет широкого применения в конструкции неметаллических и композиционных материалов, что обеспечило снижение ниже вышеуказанного предела. Однако вы­вод больших полезных грузов с помощью одноступенчатых ракет в ближайшем будущем не представляется возможным.

Основной недостаток одноступенчатой ракеты заключается в том, что конечная скорость сообщается не только полезному гру­зу, но и всей конструкции в целом. При увеличении веса конструк­ции это ложится дополнительным бременем на энергетику одно­ступенчатой ракеты, что накладывает ограничения на величину достижимой скорости.

Одна из плодотворных идей К.Э. Циолковско­го относится к созданию многоступенчатых ракет, способных за счет избавления от ненужной (балластной) массы освободившихся от топлива баков и других элементов конструкции значительно по­высить скорость сравнительно с простой одноступенчатой ракетой.

На рис. 2.8 приведена схема трехступенчатой ракеты с так называемым поперечным делением (схема "Тандем").

Рис. 2.8. Схема трехступенчатой ракеты

Под СТУПЕНЬЮ многоступенчатой ракеты понимается одноступенчатая ракета, состоящая из ракетного блока (РБ) и условного полезного груза в виде оставшейся (верхней) части ракеты. Т.о., последующая i -я ступень является полезным грузом преды­дущей (i – 1)-й ступени.

Вывод полезного груза с помощью многоступенчатой ракеты осуществляют следующим образом.

На старте, работает наиболее мощный двигатель первой ступени, способный поднять ра­кету со стартового устройства и сообщить ей определенную скорость. После того, как будет израсходовано топливо в баках первой ступени, она отбрасывается, а дальнейшее увеличение скорости достигается за счет работы двигателей следующей сту­пени и т.д. Теоретически процесс деления можно вести до беско­нечности. Однако, на практике выбор числа ступеней следует рас­сматривать, как предмет поиска оптимального конструктивного варианта. Увеличение числа ступеней при заданной массе М П.Г. полезного груза ведет к уменьшению стартовой массы М 0 ракеты, но при переходе от n ступени к (n + 1)-й выигрыш с числом n уменьшается, ухудшаются весовые характеристики отдельных ракетных блоков, увеличиваются экономические затраты и снижается надежность. Продемонстрируем это на реальном числовом примере:

Таким образом, в отличие от одноступенчатой, в многосту­пенчатой ракете одновременно с полезным грузом заданную конечную скорость приобретает масса конструкции не всей ракеты, а только последней ступень. Массы же ракетных блоков предыдущих ступеней получают меньшие скорости, что приводит к экономия энергетических затрат.

Введем следующие обозначения:

, – соответственно текущее и конечное значения относительной массы i -й ступени;

– скорость истечения при полете i -й ступе­ни;

, –соответственно текущее значение скорости и конечное значение, приобретенное i -й ступенью.

После того, как выработается, топливо 1-й ступени:

где – относительная конечная масса 1-й ступени;

M TI - – масса топлива в баках 1-й ступени.

Скорость полета 2-й ступени складывается из конечной скорости 1-й ступени и текущей скорости, приобретенной 2-й ступенью: . После выработки топлива 2-й ступени:

где: относительная конечная масса 2-й ступени;

M 0 II – стартовая масса 2-й ступени;

M Т II – масса топлива в баках 2-й ступени.

Тактом образом, каждая последующая ступень дает приращение скорости. В итоге, конечная скорость многоступенчатой ракеты определится как сумма скоростей, приобретенных всеми n ступенями:

В подобном случае часто произведение приравни­вают некоторому эквивалентному значению, называемому суммарной относительной массой. Тогда:

Суммарная относительная масса – это относительная конечная масса такой гипотетической одноступенчатой ракеты, ко­торая приобретает ту же скорость, что и соответствующая много­ступенчатая ракета при равных скоростях истечения по ступеням.

Типичный график набора скорости для многоступенчатой ракеты приведен на рис. 2.9. В осях m I , V I и m II , V II построе­ны зависимости для каждой ступени в соответствии с (2.24). В осях, показана зависимость (2.26).

Рис. 2.9. График набора скорости двухступенчатой ракеты в зависимости от m I , m II ,