Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Понятие онтогенеза. Онтогенез у многоклеточных животных

Понятие онтогенеза. Онтогенез у многоклеточных животных

Соотношение филогенеза и онтогенеза 1. Онтогенез многоклеточных организмов идет по пути увеличение размеров и усложнение организации. 2. Онтогенез организма идет по определенной генетической программе к конечной цели половозрелости и размножению. 3. С переходом к многоклеточности онтогенез усложняется по форме и удлиняется по времени. 4. Общими чертами эволюции онтогенеза являются: n автономизация (запрограммированность) онтогенеза, n направленность его дифференцировок, n выпадение метаморфоза последовательность смены программ развития под влиянием эпигенетических факторов. n

Развитие легких в разных группах позвоноч ных: А - у аксолотля (Ambystoma); Б - у чесночницы (Pelobates); В - у жабы (Ви/о); Г - у ящерицы (Lacerta), I-III- стадии развития. Двойной штриховкой показаны части легкого, дифференцирующиеся лишь под влиянием дыхания. Видно, что у жабы и ящерицы дифференцировка идет до начала функционирования (по А. А. Машковцеву, 1936)

5. Адаптации, появляющиеся на разных стадиях онтогенеза, повышающие выживаемость будут сохраняться отбором в поколениях и будут являться элементами исторического развития группы организмов.

Схема усложнения онтогенеза многоклеточных в процессе эволюции Одноклеточные. Колонии одноклеточных типа Volvox [происходит дифференцировка клеток на половые (черным) и соматические]. Многоклеточный организм типа гидры (прибавляются стадии бластулы и гаструлы). Первичное двустороннесимметричное животное (прибавляется мезодерма). Высшее двустороннесимметричное животное.

Закон зародышевого сходства. «В онтогенезе животных сначала проявляются признаки высших таксономических групп, а в процессе эмбрионального развития формируются особенности более низких таксономических категорий» (К. Бэр) Это связано с консервативностью той части генома, которая отвечает за морфогенетические процессы в онтогенезе. Но в процессе филогенеза в результате эмбриомутаций поток генов приобретает новизну, новые характеристики т. е. генотипы потомков отличаются от генотипов предков.

Явление зародышевого сходства. Эмбрионы всех позвоночных на ранних стадиях развития более сходны друг с другом, чем на более поздних стадиях (по Э. Геккелю)

Наследственность и изменчивость в эволюции онтогенеза проявляются в виде рекапитуляций, палингенезов, ценогенезов, гетерохроний (акцелерация, ретардация), гетеротопий и филэмбриогенезов.

Ф. Мюллер считал, что эволюционные перестройки могут быть в виде двух типов. 1 Онтогенез потомков может продолжаться далее той стадии на которой он окончился у предков. 2 Онтогенез потомков может на начальных или промежуточных стадиях уклоняться в сторону от пути по которому он шел у предков. Биогенетический закон Онтогенез организма есть краткое и сжатое повторение (рекапитуляция) филогенеза данного вида (Э. Геккель). А. Н. Северцов – 1. В процессе онтогенеза могут не повторяться особенности стадий развития взрослых предковых форм. 2. В процессе онтогенеза могут закладываться новые пути филогенеза. Изменения хода онтогенеза, приобретающие филогенетическое значение называются филэмбриогенезами.

1. Анаболия – надставка конечных стадий морфогенеза т. е. процесс формообразования продолжается после достижения той стадии, на которой у предков морфогенез заканчивается. 2. Девиация - отклонение, изменение пути развития на промежуточных стадиях морфогенеза. 3. Архалаксис - изменения на ранних этапах закладки органа т. е. его зачатков. Морфогенез с самого начала идет не так как у предков.

Девиация и архаллаксис Развитие костных чешуи и волос: А - костная чешуя рыб; Б - роговая чешуя рептилий; В - волос млекопитающего. Одинарные стрелки - анаболия, от А к Б - девиация, от Б к В -■ архаллаксис. При возникновении волоса группа исходных эпидермальных клеток не выпячивается, а опускается в кожу, в дальнейшем все развитие зачатка не повторяет филогенетическо го развития чешуи (по А. Н. Северцову, 1939)

Возникновение, преобразование и исчезновение органов в филогенезе Мультифункциональность органов и способность их изменять свою функцию количественно лежат в основе филогенетического преобразования органов. 1. Чем больше функций выполняет орган, тем в большем числе направлений он может изменяться в ходе эволюции. 2. Мультифункциональность обеспечивает возможность адаптивного преобразования систем, 3. Наличие или отсутствие функций определяет направление перестройки органа при изменении среды. 4. Существуют основные и второстепенные функции. 5. Количественные изменения функций обусловлены генетической гетерогенностью и, различиями в числе и размере однородных морфофункциональных единиц органа (ткани).

Основные способы преобразования органов и их функций. 1. Усиление главной функции отдельных органов может осуществляться двумя путями: а) путем изменения строения органа, б) либо увеличением числа функциональных компонентов в органе

2. Ослабление главной функции. Организм представляет собой оптимальную конструкцию с точки зрения структуры и функции. Возникает эта целесообразность в результате хронической нехватки пищевых ресурсов и гонки за выживание. Американские физиологи Тейлор и Вейбель сформулировали принцип симморфоза мощность ни одной рабочей структуры не превосходит уровня необходимого организму при максимальных нагрузках. 3. Уменьшение числа функций. Специализированные органы или структуры теряют часть функций. 4. Увеличение числа функций. а. увеличение числа функций отдельных органов повышает возможность морфофункциональных преобразований, б. при увеличении числа функций главная как правило не меняется, а дополняется другими.

5. Смена функций как правило происходит при изменении условий существования. Главная может потерять свое значение, а одна из второстепенных функций может приобрести значение главной. 6. Полимеризация органов. 7. Олигомеризация органов и концентрация функций

Сложность эволюционных взаимоотношений проявляется в субституции, гетеробатмии и компенсации функций. Субституция замещение органов и функций в процессе онтогенеза и филогенеза другим органом А) Гомотопная субституция. Б) Гетеротопная субституция. Гетеробатмия эволюция отдельных систем и органов идет с разной скоростью. Гетеробатмия разные темпы специализации систем органов мозаичная эволюция. Компенсация - отставание эволюции одних органов может компенсироваться быстрыми изменениями других органов.

Атавизмы появление у отдельных организмов данного вида признаков, которые существовали у предков, но были утрачены в процессе эволюции. Рудименты недоразвитые органы, практически утратившие в процессе эволюции свои функции по сравнению с гомологичными органами предковых форм. Рудиментация органов. Сокращение числа функций в процессе эволюции может привести к ослаблению развития органа. Рудименты обычно несут какую нибудь функцию, как правило не имеющую ничего общего с первоначальной функцией органа. Рудименты часто являются действующим звеном в морфогенетических процессах, определяющих нормальное формирование других органов. Рудиментация может происходить двумя способами: 1 Онтогенез органа идет так же как у предков, но какой то стадии останавливается. 2 Закладка органа в онтогенезе меньше, чем у предков или возникает позднее в результате этого не успевает развиться

Примеры рудиментарных органов: А-задние конечности питона (Python regius); Б-крылышко киви (Apteryx australis); В-элементы тазового пояса гладкого кита (Eubalaena glacialis) (по Ст. Сковрону, 1965; А. А. Парамонову, 1978

Соотносительные преобразования органов. Целостность и устойчивость онтогенеза в индивидуальном и историческом развитии проявляется в виде корреляций и координаций процессов морфогенеза. Корреляции функциональные и структурные взаимосвязи меду частями развивающегося организма. Геномные корреляции, основанные на взаимодействии и сцеплении генов в генотипе. Морфогенетические корреляции основаны на взаимодействии клеток или частей организма друг с другом в эмбриогенезе. Эргонтические корреляции устанавливают функциональные зависимости между дифинитивными структурами. Координации. Сопряженные изменения органов в филогенезе. Топографические координации пространственные связи органов. Динамические координации изменения в процессе филогенеза функционально связанных между собой органов и их систем. Биологические координации эволюционные изменения в органах, непосредственно не связанных между собой. Отбор идет к их согласованному изменению для обеспечения жизни

Врожденные пороки развития Пороки развития - структурные нарушения, которые возникают до рождения, выявляются сразу или через некоторое время после рождения вызывают нарушение функции органа. I. В зависимости от причины врожденные пороки развития делят на 1. Наследственные (вызванные изменением генов или хромосом, что является причиной нарушения биохимических, клеточных, тканевых и органных и организменных процессов). 2. Экзогенные (возникающие под влиянием тератогенных факторов среды). Т. к. тератогены воздействуют на те же процессы, что и мутации, то фенотипическое проявление экзогенных и генетических пороков может весьма сходным, что обозначается термином фенокопия. 3. Мультифакториальные пороки обусловлены влиянием экзогенных и генетических факторов.

II. В зависимости от стадии пренатального онтогенеза: 1. Гаметопатии (нарушения развития на стадии зиготы) 2. Бластопатии (нарушения развития на стадии бластулы) 3. Эмбриопатии (нарушения в период от 15 сут до 8 нед) 4. Фетопатии (нарушения возникшие после 10 нед) Нарушение эмбрионального морфогенеза (3 10 я неделя) наиболее часто приводит к порокам в результате нарушения: размножения (гипоплазию и аплазию органов), миграции (гетеротопии), дифференциации (персистирование эмбриональных структур, аплазия органа или его части), адгезии и гибели клеток (дисрафии незарощения).

По распространенности в организме изолированные, или одиночные, системные, т. е. в пределах одной системы, и множественные, т. е. в органах двух систем и более.

Этиология системных врожденных пороков развития Идеопатические 60% Мультифакториальные 20% Моногенные 7. 5% Хромосомные 6% Болезни матери 3% Внутриутробные инфекции 2% Медикаменты, радиация, алкоголь и др. 1. 5%

По филогенетической значимости пороки развития можно разделить на филогенетические и нефилогенетические. Филогенетически обусловленные пороки напоминают органы животных из типа Хордовые и подтипа Позвоночные (анцестральные или атавистические пороки). Они показывают генетическую связь человека с другими позвоночными, а также помогают понять механизмы возникновения пороков. Ведущими механизмами возникновения атавизмов являются вероятно мутации регуляторных генов, которые контролируют скорость морфогенеза и запуск процессов, направленных на редукцию органов. Наиболее часто возникают атавизмы: Недоразвитие органов на стадиях морфогенеза, когда они рекапитулировали предковое состояние. Персистирование эмбриональных структур, также рекапитулирующих морфологию, характерную для предков. Нарушением перемещения органов в онтогенезе.

1. Что такое онтогенез?

Ответ. Онтогенез – процесс индивидуального развития организма, от образования зиготы до смерти организма.

2. Каков набор хромосом в зиготе?

Ответ. Зигота содержит диплоидный набор хромосом.

Вопросы после § 35

1. Чем отличается онтогенез одноклеточных от онтогенеза многоклеточных организмов?

Ответ. Онтогенез – это индивидуальное развитие организма. У многоклеточных организмов онтогенез начинается с образования зиготы (при половом размножении) или с момента отделения потомка от материнской особи (при бесполом размножении) и продолжается до конца жизни. У одноклеточных начинается с момента образования организма в процессе деления материнской особи и заканчивается делением или смертью.

У животных выделяют два периода онтогенеза – эмбриональный (зародышевый) и постэмбриональный (послезародышевый).

2. Какие типы онтогенеза различают у животных? В чём их особенности?

Ответ. У животных выделяют три типа онтогенеза: личиночный, яйцекладный и внутриутробный.

Личиночный тип развития встречается, например, у насекомых, рыб, земноводных. Желтка в их яйцеклетках мало, и зигота быстро развивается в личинку, которая самостоятельно питается и растёт. Затем, по прошествии какого-то времени, происходит метаморфоз – превращение личинки во взрослую особь. У некоторых видов наблюдается даже целая цепочка превращений из одной личинки в другую и только потом – во взрослую особь. Смысл существования личинок может заключаться в том, что они питаются другой пищей, нежели взрослые особи, и, таким образом, расширяется пищевая база вида. Сравните, например, питание гусениц (листья) и бабочек (нектар) или головастиков (зоопланктон) и лягушек (насекомые). Кроме того, в личиночной стадии многие виды активно заселяют новые территории. Например, личинки двустворчатых моллюсков способны к плаванию, а взрослые особи практически неподвижны.

Яйцекладный тип онтогенеза наблюдается у рептилий, птиц и яйцекладущих млекопитающих, яйцеклетки которых богаты желтком. Зародыш таких видов развивается внутри яйца; личиночная стадия отсутствует.

Внутриутробный тип онтогенеза наблюдается у большинства млекопитающих, в том числе и у человека. При этом развивающийся зародыш задерживается в материнском организме, образуется временный орган – плацента, через который организм матери обеспечивает все потребности растущего эмбриона: дыхание, питание, выделение и др. Внутриутробное развитие оканчивается процессом деторождения.

3. Чем заканчивается эмбриональный период эмбриогенеза у крокодила?

Ответ. Эмбриональный период эмбриогенеза у крокодила заканчивается выходом особи из яйца.

4. Каковы функции плаценты?

Ответ. Функции плаценты:

Через плаценту осуществляется газообмен: кислород проникает из материнской крови к плоду, а углекислый газ транспортируется в обратном направлении.

Плод получает через плаценту питательные вещества, необходимые для его роста и развития. Кроме того, с ее помощью плод избавляется от продуктов своей жизнедеятельности.

3. Плацента обеспечивает иммунологическую защиту плода, задерживая клетки иммунной системы матери, которые, проникнув к плоду и распознав в нем чужеродный объект, могли бы запустить реакции его отторжения. В тоже время плацента пропускает материнские антитела, защищающие плод от инфекций.

4. Плацента играет роль железы внутренней секреции и синтезирует, необходимые для сохранения беременности, роста и развития плода.

Онтогенез особей различных видов неодинаков по продолжительности, темпам и характеру дифференцировок (см. далее). Обычно его делят на проэмбриональный, эмбриональный и постэмбриональный периоды. У животных обычно дифференцировками богат эмбриональный период, у растений - постэмбриональный. Каждый из этих периодов онтогенеза может быть подразделен на последовательные качественные этапы. Онтогенез может характеризоваться прямым развитием или развитием путем метаморфоза.

Особенности онтогенеза в разных группах. Формы проявления индивидуальности в живой природе разнообразны, неравноценен по содержанию и процесс онтогенеза у разных представителей прокариот, грибов, растений и животных.

Рис. 14.1. Схема последовательного усложнения онтогенеза многоклеточных в процессе эволюции. А - размножение свободно живущих одноклеточных; Б - онтогенез колонии одноклеточных типа Volvox [происходит дифференцировка клеток на половые (черным) и соматические]; В - онтогенез многоклеточного организма типа гидры (прибавляются стадии бластулы и гаструлы); Г - онтогенез первичного двустороннесимметричного животного (прибавляется мезодерма); Д - онтогенез высшего двустороннесимметричного животного (по А.Н. Северцову, 1935)

С переходом к многоклеточности (Metazoa) онтогенез усложняется по форме и удлиняется во времени (рис. 14.1), но в процессе эволюции онтогенеза наблюдаются также случаи и упрощения развития, связанного с возникновением более совершенных способов реализации наследственной информации. В ходе эволюции у растений и животных возникают сложные циклы развития, каждая фаза которых приспособлена к определенным условиям среды. Иногда в процессе эволюции происходит вторичное упрощение жизненных циклов.

С упрощением жизненного цикла качественно меняется весь процесс онтогенетического развития. Одним из последствий упрощения жизненного цикла является переход от гаплоидной фазы развития к диплоидной и от развития с метаморфозом (например, у амфибий) к прямому развитию (у рептилий и других высших позвоночных). При прямом развитии новорожденное животное обладает всеми основными чертами организации взрослого существа. Развитие с метаморфозом идет через ряд личиночных стадий; из яйца выходит личинка, которая обретает черты взрослого животного путем сложного превращения. Переход от развития путем метаморфоза к прямому развитию - один из важнейших итогов последних этапов эволюции жизни на Земле.

Несмотря на сложную расчлененность индивидуума у деревьев, кустарников и многолетних трав, по уровню организованности онтогенеза они уступают одно-, двулетним и эфемерным цветковым. У последних онтогенез протекает при строгой координации жизнедеятельности определенного числа органов. Процессы дифференциации и морфогенеза в их онтогенезе носят «взрывной» характер.

У растений онтогенез отличается большей лабильностью из-за слабого развития регуляторной системы (см. ниже). Онтогенез у растений в целом больше зависит от условий среды, чем у животных.

Общими чертами онтогенеза у разных организмов являются его запрограммированность, направленность его дифференцировок, последовательность смены программ развития под влиянием факторов среды (эпигенетические факторы).

Разнообразие онтогенеза у разных групп организмов (даже у представителей одного вида) свидетельствует об особой роли экологических факторов в стабилизации дифференцировок и жизненных циклов. Хотя отбор идет по целостному онтогенезу, отдельные его этапы выступают как необходимые предпосылки реализации всей программы и потока информации между поколениями.

У представителей разных царств, типов, классов онтогенез отличается и по масштабам дифференциации. У одноклеточных он примитивен в смысле сложности процессов дифференциации. У растений процессы дифференциации растянуты и не ограничены периодом эмбрионального развития (закладка метамерных органов у растений происходит в течение всего онтогенеза). У животных процессы дифференциации и органообразования ограничены преимущественно эмбриональным периодом. Процессы гисто- и морфогенеза у растений протекают менее сложно и касаются меньшего числа органов и структур, чему животных.

Продолжительность онтогенеза. У представителей разных типов, классов, отрядов продолжительность онтогенеза - важная видовая особенность. Ограничение продолжительности жизни наступлением естественной смерти даже при наличии благоприятных внешних условий представляет собой важный результат эволюции, позволяющий осуществлять смену поколений. У одноклеточных онтогенез завершается с образованием дочерних клеток, смерть не фиксирована морфологически (и они в определенном смысле бессмертны). У грибов и растений старение разных органов идет неравномерно. У грибов сама «грибница» живет в субстрате долго (у лугового опенка (Marasmius oreades) - до 500 лет!). С другой стороны, среди грибов есть эфемерные организмы, живущие неделями и месяцами (Clavaria gyromitra). В табл. 14.1 приведены некоторые данные о продолжительности жизни ряда растений. Растения так же довольно разнообразны по продолжительности жизни индивида, как и животные.

Таблица 14.1. Продолжительность онтогенеза некоторых видов
Виды Продолжительность онтогенеза
1. Царство предъядерных
Цианеи Несколько часов
II. Царство грибов
Пенициллум (Penicillium notatum) Несколько недель
Трутовик (Fomes fomentarius) До 25 лет
Белый гриб (Botulus botulus) Несколько лет
III. Царство растений
Резушка (Arabidopsis thaliana) 60-70 дней
Пшеница (Triticum bulgare) Около 1 года
Виноград (Vitis vinifera) 80-100 лет
Яблоня (Malus domestica) 200 лет
Грецкий орех (Juglans regia) 300-400 лет
Липа (Tilia grandifolia) 1000 лет
Дуб (Quercus robur) 1200 лет
Кипарис (Cupressus fastigiata) 3000 лет
Мамонтове дерево (Sequoia gigantea) 5000 лет
IV. Царство животных
Широкий лентец (Diphyllobothrium latum) До 29 лет
Муравей (Formica fusca) До 7 лет
Пчела медоносная (Apis mellifera) До 5 лет
Морской еж (Ehinus esculentus) До 8 лет
Com (Silurus glanis) До 60 лет
Бычок (Aphya pellucida) 1 год
Жаба обыкновенная (Bufo bufo) До 36 лет
Черепаха (Testudo sumelri) До 150 лет
Филин обыкновенный (Bubo bubo) До 68 лет
Голубь сизый (Columba livid) До 30 лет
Слон африканский (Elephas maximus) До 60 лет
Гиббон (Hylobates lar) До 32 лет

Подробное решение параграф Подведите итог 1 главы по биологии для учащихся 11 класса, авторов И.Н. Пономарева, О.К. Корнилова, Т.Е. Лощилина, П.В. Ижевский Базовый уровень 2012

  • Гдз по Биологии за 11 класс можно найти
  • Гдз рабочая тетрадь по Биологии за 11 класс можно найти

Проверьте себя

Дайте определение биосистемы «организм».

Организм представляет собой отдельность живой материи как целостная живая система.

Поясните, различаются ли понятия «организм» и «особь».

Под организмом (понятие физиологическое) имеется в виду живая система как целое, состоящее из частей, как взаимодействие клеток, органов и других компонентов тела.

Особь (понятие экологическое (популяционное) – часть окружающей среды (стаи, прайда, общества), а не как целое. Особь взаимодействует с окружающим миром, а организм это мир, в котором взаимодействуют его части.

Назовите основные свойства биосистемы «организм».

Рост и развитие;

Питание и дыхание;

Обмен веществ;

Открытость;

Раздражимость;

Дискретность;

Самовоспроизведение;

Наследственность;

Изменчивость;

Единство хим. состава.

Поясните, какую роль в эволюции живой природы выполняет организм.

Каждый организм (особь) несет в себе частичку генофонда (свой генотип) популяции. При каждом новом скрещивании, дочерняя особь получает совершенно новый генотип. Это уникальная по значимости роль организмов, осуществляющих процесс постоянного обновления наследственных свойств у новых поколений, благодаря половому размножению. Одна особь не может эволюционировать, она дает «толчок» целой популяции, нередко виду. Она может изменяться, приспосабливаясь к условиям внешней среды, но это ненаследуемые признаки. Организмы, как никакая другая форма живой материи, способны ощущать внешний мир, состояние своего тела и реагировать на эти ощущения, направленно изменяя свои действия в ответ на раздражение, идущее от внешних и внутренних факторов. Организмы могут обучаться и общаться с особями своего вида, строить жилища и создавать условия для выведения детенышей, проявлять родительскую заботу о потомстве.

5. Назовите основные механизмы управления процессами в биосистеме «организм».

Гуморальная регуляция, нервная регуляция, наследственная информация.

Охарактеризуйте основные закономерности передачи наследственности у организмов.

В настоящее время установлены многие закономерности наследования свойств (признаков) организмов. Все они находят отражение в хромосомной теории наследования признаков организма. Назовём основные положения этой теории.

Гены, являясь носителями наследственных свойств организмов, выступают единицами наследственной информации.

Цитологической основой генов являются группы рядом лежащих нуклеотидов в цепочках ДНК.

Гены, находящиеся в хромосомах ядра и клетки, наследуются как отдельные независимые единицы.

У всех организмов одного и того же вида каждый ген всегда расположен в одном и том же месте (локусе) определённой хромосомы.

Любые изменения гена приводят к появлению его новых разновидностей - аллелей этого гена и, следовательно, к изменению признака.

Все хромосомы и гены у особи присутствуют в её клетках всегда в виде пары, попавшей в зиготу от обоих родителей при оплодотворении.

В каждой гамете может быть только по одной одинаковой (гомологичной) хромосоме и по одному гену из аллельной пары.

Во время мейоза различные пары хромосом распределяются между гаметами независимо друг от друга и совершенно случайно так же наследуются и находящиеся в этих хромосомах гены.

Важным источником появления новых комбинаций гена служит кроссинговер.

Развитие организмов происходит под контролем генов в тесной взаимосвязи с факторами окружающей среды.

Выявленные закономерности наследования свойств наблюдаются у всех без исключения живых организмов с половым размножением.

Сформулируйте первый и второй законы Менделя.

Первый закон Менделя (закон единообразия гибридов первого поколения). При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Второй закон Менделя (закон расщепления). При скрещивании двух гетерозиготных потомков первого поколения между собой, во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Почему третий закон Менделя не всегда соблюдается при наследовании признаков?

Закон независимого наследования по каждой паре признаков ещё раз подчёркивает дискретный характер любого гена. Дискретность проявляется и в независимом комбинировании аллелей разных генов, и в их независимом действии - в фенотипическом выражении. Независимое распределение генов может быть объяснено поведением хромосом при мейозе: пары гомологичных хромосом, а вместе с ними и парные гены перераспределяются и расходятся в гаметы независимо друг от друга.

Как наследуются доминантные и рецессивные аллели гена?

функциональная активность доминантного аллеля гена не зависит от наличия в организме другого гена данного признака. Доминантный ген является, таким образом, господствующим, он проявляется уже в первом поколении.

Рецессивный аллель гена может проявиться во втором и последующих поколениях. Для проявления признака, формируемого рецессивным геном, необходимо, чтобы потомок получил один и тот же рецессивный вариант этого гена и от отца, и от матери (т.е. в случае гомозиготности). Тогда в соответствующей паре хромосом обе сестринские хромосомы будут иметь только один этот вариант, который не будет подавлен доминантным геном и сможет проявиться в фенотипе.

10. Назовите основные типы сцепления генов.

Различают неполное и полное сцепление генов. Неполное сцепление является результатом кроссинговера (перекреста) между сцепленными генами, тогда как полное сцепление возможно лишь в случаях, когда кроссинговер не происходит.

Как идёт формирование пола у животных и человека?

После оплодотворения, т. е. при слиянии мужских и женских хромосом, в зиготе может возникнуть их определённое сочетание либо XX, либо XY.

У млекопитающих, в том числе и у человека, из зиготы, гомогаметной по Х-хромосоме, развивается женский организм (XX), а из гетерогаметной зиготы развивается мужской организм (ХY). Позже, когда уже развившийся из зиготы организм будет способен формировать свои гаметы, то в женском организме (XX) появятся яйцеклетки только с Х-хромосомами, тогда как в мужском организме будут образовываться сперматозоиды двух типов: 50% с Х-хромосомой и столько же других - с Y-хромосомой.

Что такое онтогенез?

Онтогенез – индивидуальное развитие организма, развитие особи от зиготы до смерти.

Поясните, что такое зигота; раскройте её роль в эволюции.

Зигота – клетка, образующаяся при слиянии двух гамет (половых клеток) – женской (яйцеклетки) и мужской (сперматозоида) в результате полового процесса. Содержат двойной (диплоидный) набор гомологичных (парных) хромосом. Из зиготы образуются зародыши всех живых организмов, имеющих диплоидный набор гомологичных хромосом, - растений, животных и человека.

Охарактеризуйте особенности этапов онтогенеза у многоклеточных организмов.

В онтогенезе обычно выделяют два периода - эмбриональный и постэмбриональный - и стадии взрослого организма.

Эмбриональный (зародышевый) период развития многоклеточного организма, или эмбриогенез, у животных охватывает процессы, происходящие от первого деления зиготы до выхода из яйца или рождения молодой особи, а у растений - от деления зиготы до прорастания семени и появления проростка.

Эмбриональный период у большинства многоклеточных животных включает три основных этапа: дробление, гаструляцию и дифференциацию, или морфогенез.

В результате ряда последовательных митотических делений зиготы образуются многочисленные (128 и более) мелкие клетки - бластомеры. При делении образовавшиеся дочерние клетки не расходятся и не увеличиваются в размерах. С каждым последующим шагом они становятся все мельче, так как в них не происходит увеличения объёма цитоплазмы. Поэтому процесс деления клеток без увеличения объёма цитоплазмы называют дроблением. Со временем зародыш принимает вид пузырька со стенкой, образованной одним слоем клеток. Такой однослойный зародыш называют бластулой, а образующуюся внутри полость - бластоцелью. В ходе дальнейшего развития бластоцель превращается в первичную полость тела у ряда беспозвоночных, а у позвоночных почти полностью вытесняется вторичной полостью тела. После образования многоклеточной бластулы начинается процесс гаструляции: перемещение части клеток с поверхности бластулы вовнутрь, на места будущих органов. В результате образуется гаструла. Она состоит из двух пластов клеток - зародышевых листков: наружного - эктодермы и внутреннего - энтодермы. У большинства многоклеточных животных в процессе гаструляции образуется третий зародышевый листок - мезодерма. Она расположена между эктодермой и энтодермой.

В процессе гаструляции клетки дифференцируются, т. е. становятся различными по структуре и биохимическому составу. Биохимическая специализация клеток обеспечивается различной (дифференцированной) активностью генов. Дифференцировка клеток каждого зародышевого листка приводит к образованию различных тканей и органов, т. е. совершается морфогенез, или формообразование.

Сравнение эмбриогенеза различных позвоночных животных, например рыб, амфибий, птиц и млекопитающих, показывает, что их ранние стадии развития очень сходны между собой. Но на поздних стадиях эмбрионы этих животных различаются уже довольно сильно.

Постэмбриональный, или послезародышевый, период начинается с момента выхода организма из яйцевых оболочек или с момента рождения и продолжается до половозрелости. В этот период завершаются процессы формообразования и роста, что определяется прежде всего генотипом, а также взаимодействием генов между собой и с факторами внешней среды. У человека продолжительность этого периода составляет 13-16 лет.

У многих животных выделяют два типа постэмбрионального развития - прямое и непрямое.

В ходе онтогенеза происходят рост, дифференциация и интеграция частей развивающегося многоклеточного организма. Согласно современным представлениям, в зиготе имеется программа в виде кода наследственной информации определяющая ход развития данного организма (особи). Эта программа реализуется в процессах взаимодействия между ядром и цитоплазмой в каждой клетке зародыша, между разными его клетками и между комплексами клеток в зародышевых листках.

Стадии взрослого организма. Взрослым считается организм, достигший состояния половой зрелости и способный к размножению. У взрослого организма различают: генеративную стадию и стадию старения.

Генеративная стадия взрослого организма путём размножения обеспечивает появление потомства. Таким образом, реализуется непрерывность существования популяций и вида. У многих организмов этот период длится долго - много лет, даже у тех, кто лишь один раз в жизни даёт потомство (лососевые рыбы, угорь речной, подёнки, а у растений - многие виды бамбука, зонтичных и агавы). Однако существует много видов, у которых взрослые организмы на протяжении ряда лет неоднократно производят потомство.

На стадии старения наблюдаются различные изменения организма, ведущие к снижению его адаптивных возможностей, к увеличению вероятности смерти.

15. Охарактеризуйте основные типы питания организмов.

Существует два типа питания живых организмов: автотрофное и гетеротрофное.

Автотрофы (автотрофные организмы) - организмы, использующие в качестве источника углерода углекислый газ (растения и некоторые бактерии). Иначе говоря, это организмы, способные создавать органические вещества из неорганических - углекислого газа, воды, минеральных солей.

Гетеротрофы (гетеротрофные организмы) - организмы, использующие в качестве источника углерода органические соединения (животные, грибы и большинство бактерий). Иначе говоря, это организмы, не способные создавать органические вещества из неорганических, а нуждающиеся в готовых органических веществах. По состоянию источника пищи гетеротрофы делятся на биотрофов и сапротрофов.

Некоторые живые существа в зависимости от условий обитания способны и к автотрофному, и к гетеротрофному питанию (миксотрофы).

16. Охарактеризуйте важнейшие факторы, формирующие здоровье.

Генотип как фактор здоровья. Основой здоровья человека является способность его организма противостоять воздействиям окружающей среды и сохранять относительное постоянство гомеостаза. Нарушение гомеостаза по разным причинам вызывает болезнь, нарушение здоровья. Однако сам тип гомеостаза, механизмы его поддержания на всех этапах онтогенеза в тех или иных условиях обусловлены генами, точнее, генотипом особи.

Среда обитания как фактор здоровья. Давно замечено, что в формировании любого признака имеют значение и наследственность, и среда. Притом иногда трудно определить, от чего больше зависит тот или иной признак. Например, такой признак, как рост, наследуется с помощью многих генов (полигенно), т. е. достижение нормального роста, свойственного родителям, зависит от ряда генов, контролирующих уровень воздействия гормонов, обмен кальция, полноценность поступления пищеварительных ферментов и т. д. Вместе с тем даже «наилучший» в отношении роста генотип при плохих условиях жизни (недостаток питания, солнца, воздуха, движения) неизбежно приводит к отставанию в длине тела.

Социальные факторы здоровья. В отличие от растений и животных у человека особую область онтогенеза составляет формирование его интеллекта, нравственного облика, индивидуальности личности. Здесь наряду с общими для всего живого биологическими и небиологическими факторами действует новый мощный фактор среды обитания - социальный. Если первые в основном определяют потенциальный диапазон нормы реакции, то социальная среда, воспитание и образ жизни детерминируют конкретное воплощение наследственных задатков у данного индивида. Социальная среда выступает как своеобразный механизм передачи исторического опыта человечества, его культурных, научных и технических достижений.

17. Поясните, какова роль одноклеточных организмов в природе.

У одноклеточных относительно быстро протекают метаболические процессы, поэтому они вносят большой вклад в круговорот веществ в биогеоценозе, особенно в круговорот углерода. Кроме того, одноклеточные животные (простейшие), заглатывая и переваривая бактерии (т. е. первичных деструкторов), ускоряют процесс обновления состава бактериального населения. Растительноядные и хищные организмы тоже выполняют свою функцию в экосистеме, непосредственно участвуя в расщеплении растительного и животного материала.

18. Охарактеризуйте роль мутагенов в природе и в жизни человека.

Мутагены бывают физической и химической природы. К мутагенам относятся ядовитые вещества (например, колхицин), рентгеновские, радиоактивные, канцерогенные и другие неблагоприятные воздействия внешней среды. Под влиянием мутагенов возникают мутации. Мутагены вызывают нарушение нормальных процессов репликации, рекомбинации или расхождения генетических носителей информации.

При взаимодействии ионизирующих излучений (электромагнитные рентгеновские и гамма-лучи, а также элементарные частицы (альфа, бета, нейтроны и др.) с организмом компоненты клетки, в том числе молекулы ДНК, поглощают определённое количество (дозу) энергии.

Выявлено много химических соединений, которые обладают мутагенной активностью: волокнистый минерал асбест, этиленамин, колхицин, бензопирен, нитриты, альдегиды, пестициды и др. Нередко эти вещества одновременно являются и канцерогенами, т. е. способны вызывать развитие в организме злокачественных новообразований (опухолей). В качестве мутагенов были выявлены и некоторые живые организмы, например вирусы.

Известно, что среди растительных организмов в высокогорных или арктических условиях часто встречаются полиплоидные формы - следствие спонтанных мутаций генома. Это связано с резкими перепадами температур в период вегетации.

При контакте с мутагенами нужно помнить, что они оказывают сильное воздействие на развитие половых клеток, на заключённую в них наследственную информацию, на процессы развития эмбриона в матке матери.

19. Охарактеризуйте значение современных достижений генетики для здоровья человека.

Именно благодаря генетике сейчас разрабатываются такие методы терапии благодаря которым можно лечить заболевания ранее неизлечимые. Благодаря современных достижений генетики сейчас есть ДНК- и РНК-пробы, благодаря которым можно на ранних стадиях выявить онкозаболевания. Также научились получать ферменты, антибиотики, гормоны, аминокислоты. Например, для тех, кто болеет сахарным диабетом, был генетическими способами получен инсулин.

С одной стороны, современные достижения генетики дают новые возможности диагностики, лечения человека. С другой стороны, достижения генетики негативно сказываются на здоровье человека через употребление пищи, выраженное в повсеместном распространении генетически модифицированных продуктов питания. При употреблении в пищу таких продуктов может ослабнуть иммунитет, ухудшиться общее состояние, устойчивость к антибиотикам, могут появиться онкозаболевания, в первую очередь страдает желудочно-кишечный тракт (ЖКТ).

20. Поясните, можно ли называть вирус организмом, особью.

Когда вирус в клетке хозяина воспроизводит себе подобных - он организм, и очень активный. Вне клетки хозяина вирус не имеет признаков живого организма.

Исключительно примитивное строение вируса, простота его организации, отсутствие цитоплазмы и рибосом, а также собственного обмена веществ, маленькая молекулярная масса - всё это, отличая вирусы от клеточных организмов, даёт основание для обсуждения вопроса: что такое вирус - существо или вещество, живое или неживое? Научные споры на эту тему продолжались долго. Однако сейчас благодаря тщательному исследованию свойств огромного числа видов вирусов установлено, что вирус - особая форма жизни организма, хотя и очень примитивная. Структура вируса, представленная взаимодействующими между собой основными его частями (нуклеиновой кислотой и белками), определённость строения (сердцевина и белковая оболочка - капсида), его поддержание своей структуры позволяют рассматривать вирус как особую живую систему - биосистему организменного уровня, хотя и очень примитивную.

21. Выберите правильный ответ из предложенных (правильное подчеркнуто).

1. Гены, контролирующие развитие противоположных признаков, называются:

а) аллельными (правильно); б) гетерозиготными; в) гомозиготными; г) сцепленными.

2. «Расщепление по каждой паре признаков идет независимо от других пар признаков», - так формулируется:

а) первый закон Менделя; б) второй закон Менделя; в) третий закон Менделя (правильно); г) закон Моргана.

3. В условиях тропических районов Земли у белокочанной капусты не образуются кочаны. Какая форма изменчивости проявляется в данном случае?

а) мутационная; б) комбинативная; в) модификационная (правильно); г) онтогенетическая.

4. Случайно появившийся ягнёнок с укороченными ногами (выгодное человеку уродство - не перепрыгивает через изгородь) дал начало породе онконских овец. О каком типе изменчивости идёт здесь речь?

а) мутационной (правильно); б) комбинативной; в) модификационной; г) онтогенетической.

Выскажите свою точку зрения.

Как известно, основной единицей эволюции является популяция. А какова роль организмов в микроэволюционном процессе?

На организменном уровне впервые появляется процесс оплодотворения и индивидуального развития особи как процесс реализации наследственной информации, заключённой в хромосомах и их генах, а также оценка естественным отбором жизнеспособности этой особи.

Организмы являются выразителями наследственных свойств популяций и видов. Именно организмы определяют успех или неудачу популяции в борьбе за ресурсы внешней среды и в борьбе за существование между особями. Поэтому во всех микропопуляционных процессах исторического значения организмы являются непосредственными участниками. В организмах накапливаются новые свойства вида. На организмах проявляет своё действие отбор, оставляя более приспособленных и выбраковывая других.

На организменном уровне проявляется двунаправленность жизни каждого организма. С одной стороны, это возможность организма (особи), ориентированная на выживание и размножение. С другой стороны, это обеспечение как можно более длительного существования его популяции и вида, иногда в ущерб жизни самого организма. В этом проявляется важное, эволюционное значение организменного уровня в природе.

Симбиотические способы питания организмов возникли в ходе их эволюции. А как осваивают этот способ новорожденные особи?

Им не нужно осваивать симбиотический образ жизни или способ питания. В процессе эволюции у них также выработались все необходимые приспособления для распознания необходимой особи или субстрата. Например, особые рецепторы для восприятия другой симбиотической особи или морфологические структуры, облегчающие сам процесс питания. Тем более большинство симбиотических особей появляются на свет вблизи родительского организма и попадают сразу в благоприятные условия для развития.

Симбиотическое поведение передается от родителей. Например, у птиц или у млекопитающих по отношению к бактериям.

Почему считают, что образ жизни человека - это показатель его культуры?

От того как человек бережет себя, заботится о себе и т. д., можно судить об уровне его воспитания, это непосредственно связано с развитием человека, его духовными ценностями и собственно культурой, манерой поведения, образом жизни в целом.

В начале XX в. стал знаменитым афоризм, который писатель Максим Горький в пьесе «На дне» вложил в уста своего героя Сатина: «Человек - это звучит гордо!» Можете ли вы в настоящее время поддержать или опровергнуть это утверждение?

В настоящее время это философский вопрос… Наука создала огромное количество сложнейших технических средств, пытается проникнуть в космос и клетку, узнать секреты живого мира, причины болезней, возможность продления срока жизни человека. В то же время были разработаны "совершенные" средства уничтожения всего живого на Земле. Это гордость человечества?

Для человека существует масса нарицательных имён, отражающих его внутреннюю сущность: раб, дурак, разбойник, скотина, собака, зверь; одновременно с этим: гений, творец, создатель, разумный, умница! Так чем же отличается гений от дурака? Какими качествами, по каким критериям их оценивать и сравнивать?

У каждого человека есть свое предназначение на Земле. От того поймет ли он его, зависит его благополучие, вера в себя, гордость за себя.

Человек, как существо биологические, определенно гордость Земли. Мы умеем мыслить, выражать свои эмоции, говорить.

Но если человек внутри себя понимает, что нужно не причинять никому и ничему вред, жить в гармонии с самим собой, с окружающими и природой, ценить жизнь и не только свою, тогда такой человек – это действительно гордость!!!

Проблема для обсуждения

В 1992 г. на конференции ООН по окружающей среде в Рио-де-Жанейро на уровне руководителей 179 государств, включая Россию, были приняты важнейшие документы, призванные предотвратить деградационное развитие биосферы. Одна из программ действий человечества в XXI в. - «Сохранение биологического разнообразия» имеет девиз: «Биологические ресурсы кормят и одевают нас, обеспечивают жильём, лекарствами и духовной пищей».

Выскажите своё отношение к этому девизу. Можете ли вы его уточнить, расширить? Почему биологическое разнообразие является главной общечеловеческой ценностью?

Этот девиз в который раз напоминает нам, что мы (люди) на Земле должны жить в гармонии с природой (что-то брать, а что-то и давать взамен), а не беспощадно ее использовать в своих целях.

Нравственность, природа, человек – понятия тождественные. И к великому сожалению, в нашем обществе именно взаимосвязь этих понятий разрушена. Родители учат детей порядочности, доброте, любви к окружающему миру, духовности и бережности, но реально этого им не даем. Мы растеряли и растратили богатства, хранившиеся и копившиеся веками. Низвергли, предали забвенью заветы, традиции, опыт прошлых поколений в отношении к окружающему миру. Практически уничтожили своими руками, своим бездушием, бездумьем, своей бесхозяйственностью.

Радиационные и кислотные дожди, урожаи, покрытые ядохимикатами, обмелевшие реки, заиленные озера и пруды, превратившиеся в болота, вырубленные леса, уничтоженные животные, модифицированные организмы и продукты – вот наше современное наследие. А сейчас, вдруг, всем миром осознаем, что мы на краю гибели и каждый, именно каждый, на своем месте, должен по крупицам, упорно и добросовестно восстанавливать, залечивать, выращивать добро. Без биологического разнообразия МЫ НИЧТО. Биологическое разнообразие – это главная общечеловеческая ценность.

Основные понятия

Организм представляет собой отдельность живой материи как индивид (особь) и как целостная живая система (биосистема).

Наследственность – свойство организма передавать особенности строения, функционирования и развития от родителей к потомкам. Наследственность обусловлена генами.

Изменчивость – свойство живых организмов существовать в различных формах, обеспечивающих им способность выживать в изменяющихся условиях.

Хромосомы – структуры клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов. Хромосомы состоят из ДНК и белков.

Ген – элементарная единица наследственности, представленная биополимером – отрезком молекулы ДНК, где содержится информация о первичной структуре одного белка или молекулы рРНК и тРНК.

Геном – совокупность генов вида, в состав которого входит организм (особь). Геномом также именуют совокупность генов, характерных для гаплоидного (1n) набора хромосом данного вида организмов, или основной гаплоидный набор хромосом. В то же время геном рассматривается и как функциональная единица, и как характеристика вида, необходимая для нормального развития организмов данного вида.

Генотип - система взаимодействующих генов организма (особи). Генотип выражает совокупность генетической информации особи (организма).

Размножение – воспроизведение себе подобных. Это свойство характерно только для живых организмов.

Оплодотворение – это объединение ядер мужских и женских половых клеток - гамет, приводящее к формированию зиготы и последующему развитию из неё нового (дочернего) организма.

Зигота – одна клетка, которая образуется при слиянии женской и мужской половых клеток (гамет).

Онтогенез – индивидуальное развитие организма, включающее весь комплекс последовательных и необратимых изменений, начиная от образования зиготы и до естественной смерти организма.

Гомеостаз – состояние относительного динамического равновесия системы (в т. ч. биологической), поддерживаемого за счет механизмов саморегуляции.

Здоровье – состояние любого живого организма, при котором он в целом и все его органы способны полностью выполнять свои функции. Нет какого-либо недуга или болезни.

Вирус – уникальная доклеточная форма жизни с гетеротрофным типом питания. Реплицируется молекула ДНК или РНК внутри пораженной клетки.

Организменный уровень организации живой материи – отражает признаки отдельных особей, их поведение. Структурно-функциональной единицей организменного уровня является организм. На организменном уровне происходят следующие явления: размножение, функционирование организма как единого целого, онтогенез и др.

Размножение - это способность живых существ воспроизводить себе подобных. При этом обеспечивается непрерывность и преемственность жизни. Принято различать два основных типа размножения: бесполое и половое.

Сравнительная характеристика бесполого и полового размножения

Показатель Способ размножения
бесполое половое
Родители Одна особь Обычно две особи (разного пола)
Потомство Генетически точная копия родителя (клон) Генетически отличны от обоих родителей
Главный клеточный механизм Митоз Мейоз
Время возникновения Раньше полового Позже бесполого
Клеточные источники наследственной информации для развития потомка Многоклеточные: одна или несколько соматических клеток родителя; одноклеточные: клетка- организм как целое Родители образуют половые клетки (гаметы)
Эволюционное значение Обеспечивает воспроизведение большого количества идентичных особей, поддерживает наибольшую приспособленность в маломеняющихся условиях обитания, способствует стабилизирующему естественному отбору. Более выгодно в относительно постоянных условиях Обеспечивает биологическое разнообразие видов, возможность освоения разнообразных условий обитания, увеличивает эволюционные перспективы, способствует движущему естественному отбору. Более выгодно в изменяющихся условиях

Бесполое размножение

Основными формами бесполого размножения являются деление, спорообразование, почкование, фрагментация и вегетативное размножение. В двух первых случаях новый организм образуется из одной клетки родительской особи, в остальных - из группы клеток.

Формы бесполого размножения

Форма Примеры Характеристика
Деление Свойственна одноклеточным организмам Самая простая форма бесполого размножения. Исходная материнская клетка делится на две или несколько более или менее одинаковых дочерних клеток. Множественное деление, когда одна материнская клетка даёт начало более чем двум дочерним клеткам, называетсяшизогонией .
Споруляция Встречается у всех растений, грибов и некоторых простейших Размножение посредством спор. Спора - это мелкая гаплоидная клетка, покрытая защитным покровом (споровой оболочкой), позволяющим переносить действие различных неблагоприятных факторов среды. У многих растений процесс образования спор (спорогенез) осуществляется в особых мешковидных структурах - спорангиях. У многих организмов споры служат не только для размножения, но и для расселения. Споры большинства организмов неподвижны и распространяются пассивно. Но у некоторых водорослей и грибов споры имеют жгутики (зооспоры ) и способны активно передвигаться.
Почкование Характерно для кишечнополостных На теле материнской особи появляется небольшой вырост (почка), а затем происходит отделение (отпочкование) дочерней особи. Почкование многоклеточных организмов не следует путать с формой деления клетки одноклеточных.
Фрагментация Свойственна для плоских, ленточных и кольчатых червей, иглокожих Заключается в распаде тела многоклеточного организма на две или более части, которые затем превращаются в самостоятельные особи. Фрагментация возможна благодаря регенерации - восстановлению утраченных частей тела.
Вегетативное размножение Характерно для многих групп растений - от водорослей до цветковых От материнского организма отделяется достаточно хорошо дифференцированная часть (отводки, усы, корневые отпрыски, поросль) или же образуются особые структуры, специально предназначенные для вегетативного размножения (луковицы, клубни, корневища и др.).
Клонирование Искусственный способ размножения, не встречающийся в естественных условиях Клон - совершенно одинаковое в генетическом отношении потомство, полученное в результате имплантации ядра соматической клетки донора в яйцеклетку. Таким образом, получают зиготу, минуя «классическое» оплодотворение.



Половое размножение

Половое размножение характерно для подавляющего большинства живых существ. Оно складывается из 4 основных процессов:

  1. Гаметогенез - образование половых клеток (гамет).
  2. Оплодотворение - слияние гамет и образование зиготы.
  3. Эмбриогенез - дробление зиготы и формирование зародыша.
  4. Постэмбриональный период - рост и развитие организма в послезародышевый период.

Половые клетки

Гаметы - половые клетки, при слиянии которых образуется зигота, из которой развивается новая особь. Гаметы имеют вдвое меньше хромосом, чем остальные клетки тела (соматические клетки). Они не способны делиться в отличие от большинства соматических клеток. Различают женские и мужские половые клетки. Половая принадлежность у высших форм (например, у позвоночных) определяется на генетическом уровне.
Мужские гаметы называются сперматозоидами (если они подвижны) или спермиями (если они лишены жгутикового аппарата и не способны активно передвигаться). Сперматозоиды имеют очень маленькие размеры. Они состоят из головки, шейки, средней части и хвоста (рис. 5.11).

В головке располагается ядро, содержащее ДНК. На переднем конце головки имеется акросома - видоизменённый комплекс Гольджи, который содержит литические ферменты для растворения оболочки яйцеклетки при оплодотворении. Хвост образован микротрубочками и служит для передвижения сперматозоида.

Женские гаметы называются яйцеклетками . Они, как правило, неподвижны, имеют б‚ольшие, чем сперматозоиды, размеры, хорошо развитую цитоплазму и запас питательных веществ.
Яйцеклетки разных организмов отличаются друг от друга. В зависимости от количества в яйцеклетке желтка их делят на алецитальные, олиголецитальные, мезолецитальные, полилецитальные. В зависимости от характера распределения желтка в яйцеклетке различают гомо- или изолецитальные, телолецитальные, центролецитальные яйцеклетки.

Типы яйцеклеток

Тип Характеристика Организмы
Изолецитальные (гомолецитальные) Относительно мелкие с небольшим количеством равномерно распределённого желтка. Ядро в них располагается ближе к центру Встречаются у червей, двустворчатых и брюхоногих моллюсков, иглокожих, ланцетника
Умеренно телолецитальные Имеют диаметр около 1,5–2 мм и содержат среднее количество желтка, основная масса которого сосредоточена на одном из полюсов (вегетативном) На противоположном полюсе (анимальном), где желтка мало, находится ядро яйцеклетки Характерны для осетровых рыб и земноводных
Резко телолецитальные Содержат очень много желтка, занимающего почти весь объём цитоплазмы яйцеклетки. На анимальном полюсе находится зародышевый диск с активной, лишённой желтка цитоплазмой. Размеры этих яиц крупные - 10–15 мм и более. Встречаются у некоторых рыб, пресмыкающихся, птиц и яйцекладущих млекопитающих
Центролецитальные Характеризуются концентрацией желтка вокруг ядра, расположенного в центре, а периферические слои лишены питательных веществ Характерны для насекомых
Алецитальные Практически лишены желтка, имеют микроскопически малые размеры (0,1–0,3 мм) Характерны для плацентарных млекопитающих, в том числе и для человека

Образование половых клеток

Процесс образования половых клеток - гаметогенез - протекает в половых железах (гонадах). У высших животных женские гаметы образуются в яичниках , мужские - в семенниках . Процесс образования сперматозоидов называют сперматогенезом , яйцеклеток - оогенезом (или овогенезом) . Гаметогенез делят на несколько фаз: размножения, роста, созревания и выделяемую при сперматогенезе фазу формирования.

Фазы гаметогенеза

Стадии Число хромосом и хроматид Сперматогенез Овогенез
Размножение 2n4c Характеризуется многократными митотическими делениями клеток стенки семенника,приводящими к образованию многочисленныхсперматогоний . Эти клетки диплоидны. Фаза размножения у мужчин начинается с наступлением половой зрелости и продолжается постоянно в течение почти всей жизни Характеризуется многократными митотическими делениями клеток стенки яичника, приводящими к образованию многочисленных оогоний (овогоний) . Эти клетки диплоидны. В женском организме размножение оогоний начинается в эмбриогенезе и завершается к 3-му году жизни.
Рост 2n4c Сопровождается незначительным увеличением объёма цитоплазмы клеток, незначительным накоплением питательных веществ, необходимых для дальнейших делений, репликацией ДНК и удвоением хромосом. В фазе роста клетки получают названиесперматоцитов I порядка Сопровождается значительным увеличением объёма цитоплазмы клеток, значительным накоплением питательных веществ, необходимых для дальнейших делений, репликацией ДНК и удвоением хромосом. В фазе роста клетки получают название ооцитов (овоцитов) I порядка
Созревание 1n1c В результате первого мейотического деления образуются два одинаковыхсперматоцита II порядка , каждый из которых после второго деления мейоза формирует по две сперматиды .В результате фазы созревания из каждой диплоидной клетки формируются 4 гаплоидные сперматиды Профаза первого мейотического деления осуществляется ещё в эмбриональном периоде, а остальные события мейоза продолжаются после полового созревания организма. Каждый месяц в одном из яичников половозрелой женщины созревает одна яйцеклетка. При этом завершается I деление мейоза, образуются крупный ооцит II порядка и маленькое первое полярное (направительное) тельце, которые вступают во второе деление мейоза На стадии метафазы второго мейотического деления ооцит II порядка овулирует - выходит из яичника в брюшную полость, откуда попадает в яйцевод. Дальнейшее созревание его возможно лишь после слияния со сперматозоидом. Если оплодотворения не происходит, ооцит II порядка погибает и выводится из организма. В случае оплодотворения он завершает второе мейотическое деление, образуя зрелую яйцеклетку - оотиду (овотиду) - и второе полярное тельце. Полярные тельца никакой роли в оогенезе не играют и в конце концов погибают. В результате фазы созревания из каждой диплоидной клетки формируются гаплоидные клетки: 1 оотида и 3 полярных тельца.
Формирование 1n1c Из каждой сперматиды формируется сперматозоид с головкой, шейкой и хвостом. Эта стадия отсутствует.

Оплодотворение

Оплодотворение - это процесс слияния мужской и женской половых клеток (гамет), в результате которого образуется оплодотворённая яйцеклетка (зигота ). То есть из двух гаплоидных гамет образуется одна диплоидная клетка (зигота).
Различают наружное оплодотворение, когда половые клетки сливаются вне организма, и внутреннее , когда половые клетки сливаются внутри половых путей особи; перекрёстное оплодотворение, когда объединяются половые клетки разных особей; самооплодотворение - при слиянии гамет, продуцируемых одним и тем же организмом; моноспермию и полиспермию - в зависимости от числа сперматозоидов, оплодотворяющих одну яйцеклетку.
Для большинства видов животных, обитающих или размножающихся в воде, свойственно наружное перекрёстное оплодотворение, которое осуществляется по типу моноспермии. Подавляющее большинство наземных животных и некоторые водные виды имеют внутреннее перекрёстное оплодотворение, причём для части птиц и рептилий характерна полиспермия. Самооплодотворение встречается среди гермафродитов, да и то в исключительных случаях.
У человека процесс оплодотворения происходит в маточной трубе, куда после овуляции попадает ооцит II порядка и могут находиться многочисленные сперматозоиды. При контакте с яйцеклеткой акросома сперматозоида выделяет ферменты, разрушающие оболочки яйцеклетки и обеспечивающие проникновение сперматозоида внутрь. После проникновения сперматозоида яйцеклетка формирует на поверхности толстую непроницаемую оболочку оплодотворения , препятствующую полиспермии.
Проникновение сперматозоида стимулирует ооцит II порядка к дальнейшему делению. Он осуществляет анафазу и телофазу II мейотического деления и становится зрелым яйцом. В результате в цитоплазме яйцеклетки оказываются два гаплоидных ядра, называемых мужским и женским пронуклеусами , которые сливаются с образованием диплоидного ядра - зиготы .
У цветковых растений, кроме слияния гаплоидных гамет - одного из спермиев с яйцеклеткой и образования диплоидной зиготы, из которой развивается зародыш семени, происходит слияние второго спермия с диплоидной вторичной клеткой и образование триплоидных клеток , из которых образуется эндосперм. Этот процесс называется двойным оплодотворением .
Для некоторых групп организмов характерны типы полового размножения (без оплодотворения), один из которых называется партеногенез. Партеногенез - развитие организма из неоплодотворёной яйцеклетки. Характерен для многих общественных насекомых (муравьёв, пчёл, термитов), а также для коловраток, дафний и даже некоторых рептилий. Встречается и у растений (одуванчик).

ИНДИВИДУАЛЬНОЕ РАЗВИТИЕ ОРГАНИЗМОВ

Типы онтогенеза

Онтогенез - индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). У видов, размножающихся половым путём, он начинается с оплодотворения яйцеклетки. У видов с бесполым размножением онтогенез начинается с обособления одной клетки или группы клеток материнского организма. У прокариот и одноклеточных эукариотических организмов онтогенез представляет собой, по сути, клеточный цикл, обычно завершающийся делением или гибелью клетки.
Онтогенез есть процесс реализации наследственной информации особи в определённых условиях среды.
Различают два основных типа онтогенеза: прямой и непрямой.
При прямом развитии рождающийся организм в основном сходен со взрослым, а стадия метаморфоза отсутствует.
При непрямом развитии образуется личинка, отличающаяся от взрослого организма внешним и внутренним строением, а также характером питания, способом передвижения и рядом других особенностей.

Онтогенез многоклеточных организмов подразделяют на периоды:

  • эмбриональный (развитие зародыша);
  • постэмбриональный (послезародышевое развитие).

Эмбриональное развитие

Эмбриональное развитие (эмбриогенез) начинается с момента оплодотворения, представляет собой процесс преобразования зиготы в многоклеточный организм и завершается выходом из яйцевых или зародышевых оболочек (при личиночном и неличиночном типах развития) либо рождением (при внутриутробном). Эмбриогенез включает процессы дробления, гаструляции, гисто- и органогенеза.

Эмбриогенез

Этапы Характеристика
Дробление Ряд последовательных митотических делений зиготы, в результате которых происходит образование бластомеров . Образовавшиеся бластомеры не увеличиваются в размерах. В процессе дробления суммарный объём зародыша не изменяется, а размеры составляющих его клеток уменьшаются. Характер дробления у разных групп организмов различен и определяется типом яйцеклетки. Различают полное дробление, когда зигота дробится целиком, и неполное , когда дробится только часть её. Полное дробление, в свою очередь, бывает равномерным , если образующиеся бластомеры примерно одинаковы по величине, инеравномерным , если они отличаются по размерам. Дробление бывает синхронным илиасинхронным в зависимости от того, одновременно или нет происходит деление бластомеров. В результате ряда дроблений образуется морула, а из неё бластула, или сразу бластула. Морула - многоклеточный зародыш, состоящий из группы тесно прилегающих друг к другу клеток и напоминающий тутовую ягоду. Бластула - многоклеточный шаровидный зародыш с однослойной стенкой и полостью внутри. Бластула образуется в результатебластуляции , когда бластомеры смещаются к периферии, образуя бластодерму, образующаяся при этом внутренняя полость заполняется жидкостью и становится первичной полостью тела - бластоцелью.
Гаструляция Процесс образования двух- или трёхслойного зародыша - гаструлы . Она образуется в результате перемещения клеток бластодермы. Образующиеся слои называютзародышевыми листками . Наружный слой клеток называется эктодермой , внутренний -энтодермой , слой клеток между ними называется мезодермой . Каждый из зародышевых листков дает начало тем или иным органам. В ряде случаев возможно смешанное происхождение.
В зависимости от типа бластулы клетки в ходе гаструляции перемещаются по-разному. Выделяют четыре основных способа гаструляции: инвагинация (впячивание), эпиболия (обрастание), иммиграция (проникновение внутрь), деламинация (расслоение), которые в чистом виде почти не встречаются, что даёт основание выделять пятый способ - смешанный (комбинированный).
Гисто- и органогенез Формирование тканей и органов зародыша в результате дифференцировки клеток и зародышевых листков. Дифференцировка - это процесс появления и нарастания морфологических, биохимических и функциональных различий между отдельными клетками и частями развивающегося зародыша. Процесс дифференцировки обеспечивается дифференциальной активностью генов, то есть активностью разных групп генов в различных типах клеток.
Из эктодермы образуются нервная система, эпидермис кожи и его производные (роговые чешуи, перья и волосы, зубы).Из мезодермы образуются мускулатура, скелет, выделительная, половая и кровеносная системы.
Из энтодермы образуются пищеварительная система и её железы (печень, поджелудочная железа), дыхательная система.




Постэмбриональное развитие

Постэмбриональное (послезародышевое) развитие начинается с момента рождения (при внутриутробном развитии зародыша у млекопитающих) или с момента выхода организма из яйцевых оболочек и продолжается вплоть до смерти живого организма. Постэмбриональное развитие сопровождается ростом. При этом он может быть ограничен определённым сроком или длиться в течение всей жизни.

ПРИМЕРЫ ЗАДАНИЙ
Часть А

А1. Двуслойное строение текла характерно для

1) кольчатых червей 3) кишечнополостных

2) насекомых 4) простейших

А2. Мезодермы нет у

1) дождевого червя 3) кораллового полипа

А3. Прямое развитие происходит у

1) лягушки 2) саранчи 3) мухи 4) пчелы

А4. В результате дробления зиготы образуется

1) гаструла 3) нейрула

2) бластула 4) мезодерма

А5. Из энтодермы развивается

1) аорта 2) мозг 3) легкие 4) кожа

А6. Отдельные органы многоклеточного организма закладываются на стадии

1) бластулы 3) оплодотворения

2) гаструлы 4) нейрулы

А7. Бластуляция – это

1) рост клеток

2) многократное дробление зиготы

3) деление клетки

4) увеличение зиготы в размерах

А8. Гаструла зародыша собаки – это:

1) зародыш с образовавшейся нервной трубкой