Тригонометрия - это раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Тригонометрические функции используются для описания свойств различных углов, треугольников и периодических функций. Изучение тригонометрии поможет вам понять эти свойства. Занятия в школе и самостоятельная работа помогут вам усвоить основы тригонометрии и понять многие периодические процессы.
Ознакомьтесь с понятием треугольника. В сущности, тригонометрия занимается изучением различных соотношений в треугольниках. Треугольник имеет три стороны и три угла. Сумма углов любого треугольника составляет 180 градусов. При изучении тригонометрии необходимо ознакомиться с треугольниками и связанными с ними понятиями, такими как:
Научитесь строить единичную окружность. Единичная окружность дает возможность построить любой прямоугольный треугольник так, чтобы гипотенуза была равна единице. Это удобно при работе с тригонометрическими функциями, такими как синус и косинус. Освоив единичную окружность, вы легко сможете находить значения тригонометрических функций для определенных углов и решать задачи, в которых фигурируют треугольники с этими углами.
Ознакомьтесь с тригонометрическими функциями. Существует шесть основных тригонометрических функций, которые необходимо знать при изучении тригонометрии. Эти функции представляют собой соотношения между различными сторонами прямоугольного треугольника и помогают понять свойства любого треугольника. Вот эти шесть функций:
Запомните соотношения между функциями. При изучении тригонометрии крайне важно понимать, что все тригонометрические функции связаны между собой. Хотя синус, косинус, тангенс и другие функции используются по-разному, они находят широкое применение благодаря тому, что между ними существуют определенные соотношения. Эти соотношения легко понять с помощью единичной окружности. Научитесь пользоваться единичной окружностью, и с помощью описываемых ею соотношений вы сможете решать многие задачи.
Узнайте об основных областях науки, в которых используется тригонометрия. Тригонометрия полезна во многих разделах математики и других точных наук. С помощью тригонометрии можно найти величины углов и прямых отрезков. Кроме того, тригонометрическими функциями можно описать любой циклический процесс.
Подумайте о периодических процессах. Иногда абстрактные понятия математики и других точных наук трудны для понимания. Тем не менее, они присутствуют в окружающем мире, и это может облегчить их понимание. Приглядитесь к периодическим явлениям вокруг вас и попробуйте связать их с тригонометрией.
Представьте себе, как можно изучать естественные циклы. Когда вы поймете, что в природе протекает множество периодических процессов, подумайте о том, как можно изучать эти процессы. Мысленно представьте, как выглядит изображение таких процессов на графике. С помощью графика можно составить уравнение, которое описывает наблюдаемое явление. При этом вам пригодятся тригонометрические функции.
Прочтите соответствующий раздел. Некоторым людям тяжело усвоить идеи тригонометрии с первого раза. Если вы ознакомитесь с соответствующим материалом перед занятиями, то лучше усвоите его. Старайтесь чаще повторять изучаемый предмет - таким образом вы обнаружите больше взаимосвязей между различными понятиями и концепциями тригонометрии.
Ведите конспект. Хотя беглый просмотр учебника лучше, чем ничего, при изучении тригонометрии необходимо неспешное вдумчивое чтение. При изучении какого-либо раздела ведите подробный конспект. Помните, что знание тригонометрии накапливается постепенно, и новый материал опирается на изученный ранее, поэтому записи уже пройденного помогут вам продвинуться дальше.
Решайте приведенные в учебнике задачи. Даже если вам легко дается тригонометрия, необходимо решать задачи. Чтобы убедиться, что вы действительно поняли изученный материал, попробуйте перед занятиями решить несколько задач. Если при этом у вас возникнут проблемы, вы определите, что именно вам нужно выяснить во время занятий.
Берите на занятия все необходимое. Не забывайте свой конспект и решения задач. Эти подручные материалы помогут вам освежить в памяти уже пройденное и продвинуться дальше в изучении материала. Проясняйте также все вопросы, которые возникли у вас при предварительном чтении учебника.
Назад
Вперёд
Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.
1. Введение.
Подходя к школе, слышу голоса ребят из спортивного зала, иду дальше – поют, рисуют… везде эмоции, чувства. Мой кабинет, урок алгебры, десятиклассники. Вот и наш учебник, в котором курс тригонометрии составляет половину его объема, и в нем две закладки – это те места, где я нашла слова, не относящиеся к теории тригонометрии.
К числу немногих относятся учащиеся, которые любят математику, чувствует ее красоту и не спрашивает, зачем нужно изучать тригонометрию, где применяется изученный материал? Большинство – кто просто выполняет задания, чтобы не получить плохую оценку. И твердо уверены в том, что прикладное значение математики – это получить знания, достаточные для успешной сдачи ЕГЭ и поступления в ВУЗ (поступить и забыть).
Основная цель представляемого урока – показать прикладное значение тригонометрии в различных сферах деятельности человека. Приведенные примеры помогут учащимся увидеть связь этого раздела математики с другими предметами, изучаемыми в школе. Содержание этого урока – элемент профессиональной подготовки учащихся.
Рассказать новое о, казалось бы, давно известном факте. Показать логическую связь между тем, что уже знаем, и то, что предстоит изучить. Немного приоткрыть дверь и заглянуть за рамки школьной программы. Необычные задачи, связь с событиями сегодняшнего дня – вот те приемы, которые я использую для достижения поставленных целей. Ведь школьная математика как предмет способствует не столько обучению, сколько развитию личности, его мышления, культуры.
2. Конспект урока по алгебре и началам анализа (10 класс).
Организационный момент: Расставить шесть столов полукругом (модель транспортира), листы с заданиями для учащихся на столах (Приложение 1) .
Объявление темы урока: “Тригонометрия – это просто и понятно”.
В курсе алгебры и начал анализа мы приступаем к изучению тригонометрии, мне хотелось бы рассказать о прикладном значении этого раздела математики.
Тезис урока:
“Великая книга природы может быть прочтена только теми, кто знает язык, на котором она написана, и этот язык – математика”.
(Г. Галилей).
В конце урока подумаем вместе, смогли ли мы заглянуть в эту книгу и понять язык, на котором она написана.
Тригонометрия острого угла.
Тригонометрия – слово греческое и в переводе означает “измерение треугольников”. Возникновение тригонометрии связано с измерениями на земле, строительным делом, астрономией. А первое знакомство с ней произошло тогда, когда вы взяли в руки транспортир. Обратили вы внимание на то, как стоят столы? Прикиньте в уме: если принять один стол за хорду, то какова градусная мера дуги, которую она стягивает?
Вспомним о мере измерения углов: 1 ° = 1/ 360 часть окружности (“градус” – от латинского grad – шаг). Знаете ли вы, почему окружность разделили на 360 частей, почему не разбили на 10, 100 или 1000 частей, как это происходит, например, при измерении длин? Расскажу вам одну из версий.
Раньше люди считали, что Земля – это центр Вселенной и она неподвижна, а Солнце совершает за сутки один оборот вокруг Земли, геоцентрическая система мира, “гео” – Земля (Рисунок № 1 ). Вавилонские жрецы, проводившие астрономические наблюдения, обнаружили, что в день равноденствия Солнце от восхода до заката описывает на небесном своде полуокружность, в которой видимый поперечник (диаметр) Солнца укладывается ровно 180 раз, 1 ° – след Солнца. (Рисунок № 2) .
Долгое время тригонометрия носила чисто геометрический характер. В вы продолжаете знакомство с тригонометрией, решая прямоугольные треугольники. Узнаёте, что синус острого угла прямоугольного треугольника – это есть отношение противолежащего катета к гипотенузе, косинус – отношение прилежащего катета к гипотенузе, тангенс – отношение противолежащего катета к прилежащему катету и котангенс – отношение прилежащего катета к противолежащему. И запоминаете, что в прямоугольном треугольнике, имеющем данный угол, отношения сторон не зависят от размеров треугольника. Знакомитесь с теоремами синусов и косинусов для решения произвольных треугольников.
В 2010 году московскому метрополитену исполнилось 75 лет. Каждый день мы спускаемся в метро и не замечаем, что …
Задача № 1. Угол наклона всех эскалаторов московского метро равен 30 градусам. Зная это, количество ламп на эскалаторе и примерное расстояние между лампами, можно вычислить примерную глубину заложения станции. На эскалаторе станции “Цветной бульвар” 15 ламп, а на станции “Пражская” 2 лампы. Рассчитайте, какова глубина заложения этих станций, если расстояния между лампами, от входа эскалатора до первой лампы и от последней лампы до выхода с эскалатора равны 6 м (Рисунок № 3 ). Ответ: 48 м и 9 м
Домашнее задание . Самая глубокая станция московского метро – “Парк Победы”. Какова глубина её заложения? Предлагаю вам самостоятельно найти недостающие данные для решения домашней задачи.
У меня в руках лазерная указка, она же – дальномер. Измерим, например, расстояние до доски.
Китайский дизайнер Хуань Цяокун догадался соединить в одно устройство два лазерных дальномера, транспортир и получил инструмент, позволяющий определять расстояние между двумя точками на плоскости (Рисунок № 4 ). Как вы думаете, с помощью какой теоремы решается эта задача? Вспомните формулировку теоремы косинусов. Согласны ли вы со мной, что ваших знаний уже достаточно для того, чтобы сделать такое изобретение? Решайте задачи по геометрии и совершайте каждый день маленькие открытия!
Сферическая тригонометрия.
Помимо плоской геометрии Евклида (планиметрии) могут существовать и другие геометрии, в которых рассматриваются свойства фигур не на плоскости, а на других поверхностях, например на поверхности шара (Рисунок № 5 ). Первый математик, заложивший фундамент для развития неевклидовых геометрий был Н.И. Лобачевский – “Коперник геометрии”. С 1827 г. в течение 19 лет он был ректором Казанский Университета.
Сферическая тригонометрия, являющаяся частью сферической геометрии, рассматривает соотношения между сторонами и углами треугольников на сфере, образованных дугами больших кругов на сфере (Рисунок № 6 ).
Исторически сферическая тригонометрия и геометрия возникли из потребностей астрономии, геодезии, навигации, картографии. Подумайте, какое из этих направлений в последние годы получило столь бурное развитие, что его результат уже применяется в современных коммуникаторах. … Современное применение навигации – это система спутниковой навигации, которая позволяет определить местоположение и скорость объекта по сигналу его приемника.
Глобальная Навигационная Система (GPS). Для определения широты и долготы приемника необходимо, как минимум, принимать сигналы от трех спутников. Прием сигнала от четвертого спутника позволяет определить и высоту объекта над поверхностью (Рисунок № 7 ).
Компьютер приемника решает четыре уравнения с четырьмя неизвестными до тех пор, пока не найдется решение, которое проводит все окружности через одну точку (Рисунок № 8 ).
Знания из тригонометрии острого угла оказались недостаточны для решения более сложных практических задач. При изучении вращательных и круговых движений значение величины угла и круговой дуги не ограничены. Возникла необходимость перехода к тригонометрии обобщенного аргумента.
Тригонометрия обобщенного аргумента.
В качестве модели, с помощью которой математики работают с углами, была выбрана окружность (Рисунок № 9 ). Положительные углы откладываются против часовой стрелки, отрицательные – по часовой. Знакомы ли вы с историей такого соглашения?
Как известно, механические и солнечные часы устроены так, что их стрелки вращаются “по солнцу”, т.е. в том же направлении, в каком мы видим кажущееся нам движение Солнца вокруг Земли. (Вспомните начало урока – геоцентрическая система мира). Но с открытием Коперником истинного (положительного) движения Земли вокруг Солнца, видимое нами (т.е. кажущееся) движение Солнца вокруг Земли является фиктивным (отрицательным). Гелиоцентрическая система мира (гелио – Солнце) (Рисунок № 10 ).
Разминка .
В 2010 прошли Зимние Олимпийские игры в Ванкувере, критерии выставления оценок за выполненное упражнение фигуристом мы узнаем, решив задачу.
Задача № 2. Если фигурист совершает поворот на угол 10 800 градусов при выполнении упражнения “винт” за 12 секунд, то он получает оценку “отлично”. Определите, какое количество оборотов совершит фигурист за это время и скорость его вращения (обороты в секунду). Ответ: 2,5 оборота/сек.
Домашнее задание . На какой угол поворачивается фигурист, получивший оценку “неудовлетворительно”, если при таком же времени вращения его скорость была 2 оборота в секунду.
Наиболее удобной мерой измерения дуг и углов, связанных с вращательными движениями, оказалась радианная (радиусная) мера, как более крупная единица измерения угла или дуги (Рисунок № 11 ). Эта мера измерения углов вошла в науку через замечательные труды Леонарда Эйлера. Швейцарец по происхождению, он 30 лет прожил в России, был членом Петербургской Академии наук. Именно ему мы обязаны “аналитической” трактовкой всей тригонометрии, он вывел формулы, которые вы сейчас изучаете, ввел единообразные знаки:.sin x , cos x , tg x , ctg x .
Если до 17-го века развитие учения о тригонометрических функциях строилось на геометрической основе, то, начиная с 17-го века, тригонометрические функции начали применять к решению задач механики, оптики, электричества, для описания колебательных процессов, распространения волн. Везде, где приходится иметь дело с периодическими процессами и колебаниями, нашли применение тригонометрические функции. Функции, выражающие законы периодических процессов, обладают особым только им присущим свойством: они повторяют свои значения через один и тот же промежуток изменения аргумента. Изменения всякой функции наиболее наглядно передаются на её графике (Рисунок № 12 ).
Мы уже обращались за помощью к своему организму, при решении задач на вращение. Давайте прислушаемся к биению своего сердца. Сердце – самостоятельный орган. Головной мозг управляет любой нашей мышцей, кроме сердечной. У нее есть собственный центр управления – синусный узел. При каждом сокращении сердца по всему организму – начиная от синусного узла (размером с просяное зерно)– распространяется электрический ток. Его можно зарегистрировать с помощью электрокардиографа. Он вычерчивает электрокардиограмму (синусоиду) (Рисунок № 13 ).
Теперь поговорим о музыке. Математика – это музыка, это союз ума и красоты.
Музыка – это математика по вычислениям, алгебра по абстрагированию,
тригонометрия по красоте. Гармоническое колебание (гармоника) – это
синусоидальное колебание. График показывает, как изменяется воздушное давление
на барабанную перепонку слушателя: вверх и вниз по дуге, периодически. Воздух
давит то сильнее, то слабее. Сила воздействия совсем невелика и колебания
происходят очень быстро: сотни и тысячи толчков каждую секунду. Такие
периодические колебания мы воспринимаем как звук. Сложение двух различных
гармоник дает колебание более сложной формы. Сумма трех гармоник – еще сложнее,
а естественные, природные звуки и звуки музыкальных инструментов складываются из
большого количества гармоник. (Рисунок № 14
.)
Каждая гармоника характеризуется тремя параметрами: амплитудой, частотой и фазой. Частота колебаний показывает, сколько толчков давления воздуха происходит за одну секунду. Большие частоты воспринимаются как "высокие", "тонкие" звуки. Выше 10 КГц – писк, свист. Маленькие частоты воспринимаются как "низкие", "басовые" звуки, рокот. Амплитуда – это размах колебаний. Чем размах больше, тем сильнее воздействие на барабанную перепонку, и тем громче звук, который мы слышим (Рисунок № 15 ). Фаза – это смещение колебаний во времени. Фаза может измеряться в градусах или радианах. В зависимости от фазы смещается нулевой отсчет на графике. Для задания гармоники достаточно указать фазу от –180 до +180 градусов, поскольку при больших значениях колебание повторяется. Два синусоидальных сигнала с одинаковыми амплитудой и частотой, но разными фазами складываются алгебраически (Рисунок № 16 ).
Итог урока. Как вы думаете, смогли мы прочитать несколько страниц из Великой книги природы? Узнав о прикладном значении тригонометрии, стала ли вам более понятна ее роль в различных сферах деятельности человека, понятен ли вам был изложенный материал? Тогда вспомните и перечислите сферы применения тригонометрии, с которыми вы познакомились сегодня или знали ранее. Я надеюсь, что каждый из вас нашел в сегодняшнем уроке что-то новое для себя, интересное. Быть может, это новое подскажет вам путь в выборе будущей профессии, но, кем бы вы ни стали, ваша математическая образованность поможет стать профессионалом своего дела и интеллектуально развитым человеком.
Домашнее задание . Ознакомиться с конспектом урока (
Синус, косинус, тангенс - при произнесении этих слов в присутствии учеников старших классов можно быть уверенным, что две трети из них потеряют интерес к дальнейшему разговору. Причина кроется в том, что основы тригонометрии в школе преподаются в полном отрыве от реальности, а потому учащиеся не видят смысла в изучении формул и теорем.
В действительности данная область знаний при ближайшем рассмотрении оказывается весьма интересной, а также прикладной - тригонометрия находит применение в астрономии, строительстве, физике, музыке и многих других областях.
Ознакомимся с основными понятиями и назовем несколько причин изучить этот раздел математической науки.
Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.
Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.
Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.
Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.
Например, в прошлом человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.
Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.
Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.
Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.
Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.
Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.
В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.
История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.
Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите - дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.
Существуют таблицы, в которые занесены числовые значения для синусов, косинусов и тангенсов всех возможных углов. Ниже представим данные для углов в 0, 30, 45, 60 и 90 градусов, которые необходимо выучить как обязательный раздел тригонометрии для «чайников», благо запомнить их довольно легко.

Если случилось так, что числовое значение синуса или косинуса угла «вылетело из головы», есть способ вывести его самостоятельно.
Начертим круг, через его центр проведем оси абсцисс и ординат. Ось абсцисс располагается горизонтально, ось ординат - вертикально. Обычно они подписываются как «X» и «Y» соответственно. Теперь из центра окружности проведем прямую таким образом, чтобы между ней и осью X получился нужный нам угол. Наконец, из той точки, где прямая пересекает окружность, опустим перпендикуляр на ось X. Длина получившегося отрезка будет равна численному значению синуса нашего угла.

Данный способ весьма актуален, если вы забыли нужное значение, например, на экзамене, и учебника по тригонометрии под рукой нет. Точной цифры вы таким образом не получите, но разницу между ½ и 1,73/2 (синус и косинус угла в 30 градусов) вы точно увидите.
Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.
Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света - без базовой тригонометрии в формулах просто не обойтись.
Ещё одна профессия, которая немыслима без тригонометрии - это геодезист. Используя теодолит и нивелир либо более сложный прибор - тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.
Тригонометрия имеет дело не только с углами и сторонами треугольника, хотя именно с этого она начинала своё существование. Во всех областях, где присутствует цикличность (биологии, медицине, физике, музыке и т. д.) вы встретитесь с графиком, название которого наверняка вам знакомо - это синусоида.

Такой график представляет собой развёрнутую вдоль оси времени окружность и внешне похож на волну. Если вы когда-нибудь работали с осциллографом на занятиях по физике, вы понимаете, о чем идет речь. Как музыкальный эквалайзер, так и прибор, отображающий сердечные ритмы, используют формулы тригонометрии в своей работе.
Задумываясь о том, как выучить тригонометрию, большинство учащихся средней и старшей школы начинают считать её сложной и непрактичной наукой, поскольку знакомятся лишь со скучной информацией из учебника.

Что касается непрактичности - мы уже увидели, что в той или иной степени умение обращаться с синусами и тангенсами требуется практически в любой сфере деятельности. А что касается сложности… Подумайте: если люди пользовались этими знаниями больше двух тысяч лет назад, когда взрослый человек имел меньше знаний, чем сегодняшний старшеклассник, реально ли изучить данную область науки на базовом уровне лично вам? Несколько часов вдумчивых занятий с решением задач - и вы достигнете своей цели, изучив базовый курс, так называемую тригонометрию для «чайников».
Тригонометрия - математическая дисциплина, изучающая зависимость между сторонами и углами треугольника.
Казалось бы, тригонометрию можно считать лишь частью геометрии, однако тригонометрические функции, с помощью которых связываются элементы треугольника, - это объект изучения математического анализа, а тригонометрические уравнения - уравнения, в которых неизвестные являются аргументами тригонометрических функций, - изучаются методами алгебры. Таким образом, тригонометрия - раздел математики, использующий достижения других важных ее разделов.
Основные формулы тригонометрии задаются теоремой синусов (см. Синусов теорема) и теоремой косинусов (см. Косинусов теорема). Кроме них часто применяются теорема тангенсов, открытая в XV в. немецким математиком И. Региомонтаном,
,
,
,
и формулы К. Мольвейде (немецкого математика конца XVIII - начала XIX в.):
,
.
Здесь через обозначены длины сторон треугольника, а через - соответственно величины противоположных им углов.
Помимо теоремы косинусов углы треугольника могут быть также выражены через его стороны с помощью формул:
,
,
,
где - полупериметр треугольника.
Площадь треугольника помимо формулы Герона (см. Герона формула) может быть выражена с помощью тригонометрии через стороны и углы треугольника еще несколькими способами:
,
,
.
Тригонометрия возникла из практических нужд человека. С ее помощью можно определить расстояние до недоступных предметов и, вообще, существенно упрощать процесс геодезической съемки местности для составления географических карт.
Зачатки тригонометрических познаний зародились в древности. На раннем этапе тригонометрия развивалась в тесной связи с астрономией и являлась ее вспомогательным разделом.
Древнегреческие ученые разработали «тригонометрию хорд», изложенную выдающимся астрономом Птолемеем (II в.) в его работе «Альмагест». Птолемей вывел соотношения между хордами в круге (выражавшиеся словесно ввиду отсутствия в то время математической символики), которые равносильны современным формулам для синуса половинного и двойного угла, суммы и разности двух углов:
, , .
Важный шаг в развитии тригонометрии был сделан индийскими учеными, которые заменили хорды синусами. Это нововведение перешло в VIII в. в арабоязычную математику стран Ближнего и Среднего Востока, где тригонометрия постепенно превратилась из раздела астрономии в самостоятельную математическую дисциплину. Помимо синуса были введены и другие тригонометрические функции, и для них были составлены таблицы.
Общепринятые понятия тригонометрии, а также обозначения и определения тригонометрических функций сформировались в процессе долгого исторического развития. Если, например, при введении основных тригонометрических понятий представляется естественным принимать радиус тригонометрического круга (рис. 1) равным единице, то эта, казалось бы, простая идея была усвоена только в Х-XI вв. Если мы понимаем под синусом угла в прямоугольном треугольнике отношение катета (линия синуса) к гипотенузе (т.е. радиусу единичной окружности), то в средние века термином «синус» обозначали саму линию синуса . То же относится к косинусу, под которым понималась линия косинуса , и другим тригонометрическим функциям.

Лишь постепенно, благодаря введению новых понятий, а также в результате разработки и усовершенствования математической символики, тригонометрия приобрела современный вид, наиболее удобный для решения вычислительных задач. Окончательный вид она приобрела в XVIII в. в трудах Л. Эйлера.
Существует также сферическая тригонометрия, рассматривающая соотношения между сторонами и углами треугольников на сфере, образованных дугами больших кругов. Она является частью сферической геометрии и возникла исторически раньше тригонометрии на плоскости из потребностей практической астроном
Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.
В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.
Навигация по странице.
Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.
Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .


Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.
Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.


Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.
Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.
Их вывод и примеры применения можно посмотреть в статье .


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .
Copyright by cleverstudents
Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.