Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Вогнутое зеркало - определение фокусного расстояния и радиуса кривизны. Иллюзии от вогнутых и выпуклых зеркал

Вогнутое зеркало - определение фокусного расстояния и радиуса кривизны. Иллюзии от вогнутых и выпуклых зеркал

Вывод формулы сферического зеркала

Рассмотрим узкий приосевой пучок световых лучей (u - малый угол), падающий на вогнутое сферическое зеркало. В этом случае можно положить: h/r « 1 и h/a « 1 , тогда имеем:

по закону отражения: i = i" (1)

из треугольника ΔSMC: i + u = α (2)

из треугольника ΔCMS": u" + α = i" (3)

Из (1), (2) и (3), находим: u + u" = 2α (4)

Для малых углов можем написать соотношения:

u ≈ sin u = h/a

u" ≈ sin u" = h/a" (5)

α ≈ sin α = h/r

Подставляя (5) в (4) и сокращая на h, получаем формулу сферического зеркала:

(6)

То, что h и u не входят в (6) означает, что любой луч, выходящий из S (и принадлежащий к достаточно узкому пучку), после отражения пройдет через точку S" на расстоянии a" от полюса. Таким образом, точка S" есть изображение точки S. Точки S и S" сопряжены между собой, т. е. поместив источник в точку S", мы получим изображение в точке S (правило обратимости световых лучей).

Для выпуклого сферического формула (6) остается в силе, однако a" < 0 и 2/r < 0, тогда

(6")

Фокус и фокусное расстояние

Фокусом F называется точка на главной оптической оси зеркала, в которой сходится параллельный пучок лучей, отраженных от зеркала. Расстояние от фокуса до полюса зеркала называется фокусным расстоянием f.

Для вычисления фокусного расстояния f, в (6) полагаем a = ∞ и находим a" = r/2 = f

Подставляя (7) в (6), получим формулу сферического зеркала в виде:

(8)

В случае выпуклого зеркала фокус f < 0, т. е. является мнимым.

Увеличение

Отношение линейных размеров изображения y" к линейным размерам предмета y называется линейным или поперечным увеличением β.

Из подобия треугольников Δ S 1 PS и Δ S" 1 PS" , находим поперечное увеличение сферического зеркала.

Сферические зеркала могут давать различные изображения предметов. Для построения изображения одной точки А, создаваемого сферическим зеркалом, пользуются любыми двумя из трех лучей , показанных на рис. 29.13. Луч 1 из точки А проводится параллельно главной оптической оси.

После отражения он проходит через главный фокус зеркала Ф. Луч 2 из точки А проводится через главный фокус Ф. После отражения от зеркала он идет параллельно главной оптической оси зеркала. Луч 3 проводится через сферический центр С зеркала. После отражения он идет обратно к точке А по т ой же прямой.

Примеры изображений предметов, создаваемых сферическими зеркалами, показаны на рис. 29.14. Заметим, что выпуклое зеркало всегда дает мнимое изображение предметов.

Выясним, как найти положение изображения светящейся точки А, расположенной на главной оптической оси ОС зеркала (рис. 29.15). Ясно, что изображение точки должно быть на этой же оси (объясните, почему).

Проведем из точки А произвольный луч АВ. В точку его падения В проведем радиус СВ. Он является нормалью (перпендикуляром) к поверхности зеркала, поэтому <1 = <2, что и определяет положение отраженного луча BA1. В точке A1 и получится изображение точки А. Положение точки А1 однозначно определяется положением самой точки А. Поэтому точки А и А1 называют сопряженными.

Обозначим расстояние АО через d, А1О - через f и ОС - через R. Для зеркал, поверхность которых составляет малую часть поверхности сферы, приближенно можно считать, что BA ≈ ОA = d и ВА1 ≈ OA1 = f. Так как <1 = <2, то линия ВС в треугольнике ABA1 является биссектрисой угла АВА1, а это означает, что отрезки АС и А1С пропорциональны сторонам треугольника АВА1.

А1С/АС = ВА1/ВА, или (R-f)/(d-R) = f/d.

Преобразуем последнее соотношение:

Rd – fd = fd – Rf; Rf + Rd = 2fd.

После деления на Rfd получим 1/d + 1/f = 2/R. Заменяя R его значением, получим формулу сопряженных точек зеркала:

1/d + 1/f = 1/F. (29.2)

Эта формула справедлива как для вогнутых, так и для выпуклых зеркал, но числовые значения действительных величин следует подставлять с плюсом, а мнимых - с минусом. Например, главное фокусное расстояние вогнутых зеркал берется со знаком плюс, а выпуклых - со знаком минус. Отрицательный ответ показывает, что соответствующая ему величина - мнимая.

Плоское зеркало не способно сфокусировать пучок лучей. Расходящийся пучок остается после отражения расходящимся. Сфокусировать отраженный пучок можно с помощью вогнутого сферического зеркала. Рассмотрим отражение луча в зеркале.

Источник s испускает луч, отраженный от зеркала и пересекающий оптическую ось в точке s’. Можно провести геометрические рассуждения, аналогичные преломлению луча на сферической поверхности и доказать, что положение изображения не будет зависеть от угла φ, то есть, параксиальный пучок, испущенный s, соберется в одной точке. Однако, мы не будем повторять эти рассуждения, а воспользуемся чисто математическим приемом. Как известно, угол преломления подчиняется закону Снеллиуса. Поскольку угол отраженного луча β 1 =-α (знак минус берется, так как угол откладывается от нормали в другую сторону), то закон Снеллиуса чисто формально можно применить и к отраженному лучу, если положить n=-1. Подчеркиваю, что этот прием чисто математический, никакого физического смысла этот показатель преломления не имеет.

Нами была получена формула . Полагая n 1 =1, n 2 =-1, получим . Эта формула справедлива как для вогнутого, так и для выпуклого зеркала.

Вогнутое зеркало. R<0. В этом случае . Если то s’<0. Это означает, что изображение получается слева. Расходящийся пучок лучей после отражения собирается слева от зеркала, получаем действительное изображение предмета. Если же то s’>0. Изображение получается справа от зеркала (за зеркалом). Это мнимое изображение, лучи после отражения не пересекаются. Ясно, что величина играет роль фокуса вогнутого зеркала. Если источник находится в нем, то испущенный им пучок преобразуется зеркалом в параллельный. Самостоятельно рассмотрите падение на вогнутое зеркало сходящегося пучка.

Выпуклое зеркало. R>0. В этом случае . При любом положительном s величина s’ всегда будет положительной. Это означает, что выпуклое зеркало всегда дает мнимое изображение. Оно находится за зеркалом. Расходящийся пучок лучей не может быть сфокусирован выпуклым зеркалом. Если на выпуклое зеркало падает параллельный пучок лучей, то есть s=+∞, то после отражения пучок будет расходиться из точки , лежащей за зеркалом справа. Это фокус выпуклого зеркала.

Поскольку для зеркала действительное изображение формируется по одну сторону с источником, а мнимое – по разные стороны с источником (это получается из-за того, что после отражения лучи меняет направление своего хода), для увеличения мы будем использовать формулу со знаком +. То есть, . Самостоятельно выясните, при каких положениях источника изображение будет увеличенным и уменьшенным.


Для геометрического построения изображений в зеркалах необходимо использовать «удобные» лучи.

Один из лучей – «фокальный», параллельный оптической оси луч отражается так, что отраженный луч (или его пунктирное продолжение) проходит через фокус. Другой луч – «полярный», он отражается в вершине (полюсе). Ясно, что углы падения и отражения равны, поэтому такой луч можно построить симметричным отображением падающего луча вниз. На рисунках показано построение изображений в вогнутом (A’ – действительное, B’ – мнимое) и выпуклом зеркалах. Кроме этих лучей можно использовать еще один луч, подумайте какой.

Замечу, что получение точечного изображения в зеркале возможно лишь при использовании параксиальных (приосевых) пучков лучей. Широкие пучки лучей приводят к таким же аберрациям, как и в линзах.

Государственное образовательное учреждение высшего профессионального образования «Сибирский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию»

(ГОУ ВПО СибГМУ Росздрава)

Кафедра___________________________

Утверждено

На заседании кафедры

Протокол №___от « «_______2009

Ст. преподаватель Колубаева Л.А.

ЛЕКЦИЯ №2

« Оптические системы»

Введение:

Используя законы геометрической оптики можно проектировать физический эксперимент. Получать изображения различных объектов, наблюдать которые невозможно, изменяя оптический ход лучей.

1.Оптические системы: отражательные и преломляющие

2.Сферические зеркала и их оптические характеристики.

3. Связь оптических и геометрических характеристик зеркал.

4.Зеркальное отражение, диффузное отражение

5.Построение изображений в зеркалах и их характеристика.

6.Формула зеркала и правило знаков. Увеличение изображений зеркалом

7.Линзы, оптические оси, фокусы, вершины, фокальные поверхности. Тонкие линзы, оптический центр.

8. Преломление на сферической поверхности.

Литература

1. Джанколи Д. Физика.Т.2; М. Мир, 1989г

2.Мякишев Т.Я. Физика, Оптика; М. Дрофа, 2002г

3.Савельев И.В. Курс общей физики т.3 М.изд. Дрофа,2003г.

Наглядные пособия

    Компьютерные демонстрации

    Презентации

Оптические системы

Тела или системы тел, преобразующие ход лучей света называются оптическими системами.

Если расходящийся пучок лучей преобразуется оптической системой в сходящийся пучок, изображение точки, получившееся в месте пересечения преобразованных лучей, называют действительным, а оптические системы – собирающими.

Если расходящийся пучок лучей, выходящий из светящейся точки, преобразуется оптической системой, так, что он остается расходящимся, изображение точки, получающееся на месте пересечения продолжений преобразованных лучей, называется мнимым, а система называется рассеивающей. Мнимые изображения представляют собой «оптические приведения», их невозможно наблюдать ни на каком экране, между тем как действительные изображения на самом деле существуют и легко наблюдаются.

Оптические системы, состоящие из зеркал – это отражательные системы.

Оптические системы, состоящие из линз – преломляющие системы. В практике используются сложные системы.

Лучевой метод нахождения расположения предмета.

Мы уже знаем, что в однородной прозрачной среде свет распространяется прямолинейно. Рассмотрим точечный источник света (точечным считается источник, размерами которого можно пренебречь по сравнению с расстояниями, на которых рассматривается его действие). Лучи света, исходящие из этого источника, направлены вдоль радиусов (см. рис.2.1а). Лучевой метод нахождения расположения предмета основывается на законе прямолинейного распространения света. Если известны направления нескольких лучей, выходящих из точечного источника, то всегда можно определить положение этого источника. Следует просто продолжить хотя бы два таких луча в направлении противоположном их распространению, до их пересечения. Точка их пересечения и является положением точечного источника (см. рис.2.1б).

Когда пучок расходящихся лучей попадает из источника в глаз, то хрусталик глаза автоматически меняет свою форму так, чтобы расходящиеся из точечного источника лучи собирались на сетчатке глаза, таким образом, мы получаем изображение точки. Этот процесс дает те же сведения, которые мы получаем, продолжая лучи до их пересечения.

Лучевой методнахождения расположения предмета используется при построении изображений.Изображением точечного источника называют точку, в которой пересекаются лучи или их продолжения от этого источника после прохождения ими оптической системы (зеркало, призма, линза)

Сферические зеркала и их оптические характеристики.

Сферическое зеркал о. Сферическое зеркало, это зеркало, образованное частью поверхности сферы. Существуют два типа таких зеркал. Если зеркальной является вогнутая сторона, то зеркало называется вогнутым. Если зеркальной является выпуклая поверхность, то зеркало называется выпуклым. Центр сферы, часть которой составляет поверхность зеркала, называется оптическим центром зеркала С, а радиус ее называется радиусом кривизны R зеркала (см.рис.2.2)

Вершина шарового сегмента О называется полюсом зеркала . Прямая линия, проходящая через оптический центр зеркала, называется его оптической осью. Оптическая ось, проходящая через полюс зеркала, называется главной, а прочие оптические оси побочными оптическими осями Согласно законам отражения, луч, падающей на сферическое зеркало, и луч, отраженный составляют с радиусом кривизны зеркала одинаковые углы и лежат с ним в одной плоскости. Главная оптическая ось выделена из всех других прямых, проходящих через оптический центр, только тем, что она является осью симметрии зеркала.

Вогнутое зеркало. Фокус .

Отражение параллельного пучка лучей от вогнутого сферического зеркала. Точки O – оптический центр, P – полюс, F – главный фокус зеркала; OP – главная оптическая ось, R – радиус кривизны зеркала.

Фокусом вогнутого зеркала называется точка, в которой пересекаются после отражения параллельные лучи, падающие на зеркало.

Фокус, лежащий на главной оптической оси, называется главным фокусом. Фокус, лежащий на побочной оси, называется побочным. Фокусы вогнутого зеркала действительные. Расстояние между полюсом и главным фокусом называется главным фокусным расстоянием F. Геометрическое место всех фокусов представляет часть сферической поверхности, называемую фокальной поверхностью.

Главный фокус выпуклого зеркала является мнимым. Если на выпуклое зеркало падает пучок лучей, параллельных главной оптической оси, то после отражения в фокусе пересекутся не сами лучи, а их продолжения (рис.2.4).

Главное фокусное расстояние сферического зеркала связано с радиусом кривизны.

Найдем связь между оптической характеристикой и расстояниями, определяющими положение предмета и его изображения.

Пусть предметом служит некоторая точка А, располагающаяся на оптической оси. Используя законы отражения света, построим изображение этой точки (рис. 2.13).

Обозначим расстояние от предмета до полюса зеркала (АО), а от полюса до изображения(ОА).

Рассмотрим треугольник АРС, получаем, что

Из треугольника АРА, получаем, что
. Исключим из этих выражений угол
, так как единственный который не опирается на ОР.

,
или

(2.3)

Углы ,,опираются на ОР. Пусть рассматриваемые пучки параксиальны, тогда эти углы малы и, следовательно, их значения в радианной мере равно тангенсу этих углов:

;
;
, гдеR=OC, является радиусом кривизны зеркала.

Подставим полученные выражения в уравнение (2.3)

Так как мы ранее выяснили, что фокусное расстояние связано с радиусом кривизны зеркала, то

(2.4)

Выражение (2.4) называется формулой зеркала, которая используется лишь с правилом знаков:

Расстояния ,,
считаются положительными, если они отсчитываются по ходу луча, и отрицательными – в противном случае.

Выпуклое зеркало .

Рассмотрим несколько примеров на построение изображений в выпуклых зеркалах.

1) Предмет расположен на расстоянии большем радиуса кривизны. Строим изображение концевых точек предмета А и В. Используем лучи: 1) параллельный главной оптической оси; 2) луч, проходящий через оптический центр зеркала. Получим изображение мнимое, уменьшенное, прямое.(рис.2.14)

2) Предмет расположен на расстоянии равном радиусу кривизны. Изображение мнимое, уменьшенное, прямое (рис.2.15)

Фокус выпуклого зеркала мнимый. Формула выпуклого зеркала

.

Правило знаков для d и f остается таким же, как и для вогнутого зеркала.

Линейное увеличение предмета определяется отношением высоты изображения к высоте самого предмета

. (2.5)

Таким образом, независимо от расположения предмета относительно выпуклого зеркала изображение оказывается всегда мнимым, прямым, уменьшенным и расположенным за зеркалом. В то время как изображения в вогнутом зеркале более разнообразны, зависят от расположения предмета относительно зеркала. Поэтому вогнутые зеркала применяются чаще.

Рассмотрев принципы построения изображений в различных зеркалах, мы подошли к пониманию действия столь различных приборов, как астрономические телескопы и увеличивающие зеркала в косметических приборах и медицинской практике, мы способны сами спроектировать некоторые приборы.

Зеркальное отражение, диффузное отражение

Плоское зеркало.

Простейшей оптической системой является плоское зеркало. Если параллельный пучок лучей, падающий на плоскую поверхность раздела двух сред, после отражения остается параллельным, то отражение называется зеркальным, а сама поверхность называется плоским зеркалом (рис. 2.16).

Изображения в плоских зеркалах строятся на основании закона отражения света. Точечный источник S (рис.2.17) дает расходящийся пучок света, построим отраженный пучок. Восстановим перпендикуляр в каждую точку падения и отраженный луч изображаем из условияÐa=Ðb(Ða 1 =Ðb 1, Ða 2 =b 2 и т.д.) Получаем расходящийся пучок отраженных лучей, продолжаем эти лучи до пересечения, точка их пересечения S ¢ является изображением точки S, это изображение будет мнимым.

Изображение прямой линии AB можно построить, соединяя прямой изображения двух концевых точек А¢и В¢. Измерения показывают, что это изображение находится на таком же расстоянии за зеркалом, на каком предмет находится перед зеркалом, и, что размеры его изображения такие же, как и размеры предмета. Изображение, обра­зующееся в плоском зеркале, обращенное и мнимое (см. рис.2.18).

Если отражающая поверхность шероховата, то отражение неправильное и свет рассеивается, или диффузно отражается (рис.2.19)

Диффузное отражение гораздо более приятно для глаза, чем отражение гладкими поверхностями, называемое правильным отражением.

Линзы.

Линзы, также как и зеркала являются оптическими системами, т.е. способны изменять ход светового луча. Линзы по форме могут быть различными: сферическими, цилиндрическими. Мы остановимся только на сферических линзах.

Прозрачное тело, ограниченное двумя сферическими поверхностями, называется линзой .

Прямую линию, на которой лежат центры сферических поверхностей, называют главной оптической осью линзы. Главная оптическая ось линзы пересекает сферические поверхности в точках М и N – это вершины линзы. Если расстоянием MN можно пренебречь по сравнению с R 1 и R 2 , то линза называется тонкой. В этом случае (×)М совпадает с (×)N и тогда (×)М будет называться оптическим центром линзы. Все прямые, проходящие через оптический центр линзы, кроме главной оптической оси называются побочными оптическими осями (рис.2.20).

Собирающие линзы . Фокусом собирающей линзы называется точка, в которой пересекаются параллельные оптической оси лучи после преломления в линзе. Фокус собирающей линзы – действительный. Фокус, лежащий на главной оптической оси, называется главным фокусом. Любая линза имеет два главных фокуса: передний (со стороны падающих лучей) и задний (со стороны преломленных лучей). Плоскость, в которой лежат фокусы, называется фокальной плоскостью. Фокальная плоскость всегда перпендикулярна главной оптической оси и проходит через главный фокус. Расстояние от центра линзы до главного фокуса называется главным фокусным расстоянием F (рис.2.21).

Для построения изображений какой- либо светящейся точки следует проследить ход любых двух лучей, падающих на линзу и преломленных в ней до их пересечения (или пересечения их продолжения). Изображение протяженных светящихся предметов представляет собой совокупность изображений отдельных его точек. Наиболее удобными лучами, используемыми при построении изображений в линзах, являются следующие характерные лучи:

1) луч, падающий на линзу параллельно какой-либо оптической оси, после преломления пройдет через фокус, лежащий на этой оптической оси

2) луч, идущий вдоль оптической оси, не меняет своего направления

3) луч, проходящий через передний фокус, после преломления в линзе пойдет параллельно главной оптической оси;

На рисунке 2.25 продемонстрировано построение изображения точки А предмета АВ.

Кроме перечисленных лучей при построении изображений в тонких линзах используют лучи, параллельные какой-либо побочной оптической оси. Следует иметь в виду, что лучи, падающие на собирающую линзу пучком, параллельным побочной оптической оси, пересекают заднюю фокальную поверхность в той же точке, что и побочная ось.

Формула тонкой линзы:

, (2.6)

где F - фокусное расстояние линзы; D - оптическая сила линзы; d - расстояние от предмета до центра линзы; f - расстояние от центра линзы до изображения. Правило знаков будет таким же, как и для зеркала: все расстояния до действительных точек считаются положительными, все расстояния до мнимых точек считаются отрицательными.

Линейное увеличение, даваемое линзой,

, (2.7)

где H - высота изображения; h - высота предмета.

Рассеивающие линзы . Лучи, падающие на рассеивающую линзу параллельным пучком, расходятся так, что их продолжения пересекаются в точке, называемоймнимым фокусом.

Правила хода лучей в рассеивающей линзе:

1) лучи, падающие на линзу параллельно какой-нибудь оптической оси, после преломления пойдут так, что их продолжения пройдут через фокус, лежащий на оптической оси (рис. 2.26):

2)луч, идущий вдоль оптической оси, не меняет своего направления.

Формула рассеивающей линзы:

(правило знаков остается прежним).

На рисунке 2.27 приведен пример построения изображений в рассеивающих линзах.