Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Примеры электромагнитных явлений в физике 7. Электромагнитные явления и теория физики в помощь при построении автозвука

Примеры электромагнитных явлений в физике 7. Электромагнитные явления и теория физики в помощь при построении автозвука

На данном уроке, тема которого: «Электромагнитное поле», мы обсудим понятие «электромагнитное поле», особенности его проявления и параметры этого поля.

Мы разговариваем по мобильному телефону. Как передается сигнал? Как передается сигнал от космической станции, улетевшей к Марсу? В пустоте? Да, вещества может не быть, но и это не пустота, есть нечто другое, через что передается сигнал. Это нечто назвали электромагнитным полем. Это прямо не наблюдаемый, но реально существующий объект природы.

Если звуковой сигнал - это изменение параметров вещества, например воздуха (рис. 1), то радиосигнал - это изменения параметров ЭМ-поля.

Рис. 1. Распространение звуковой волны в воздухе

Слова «электрический» и «магнитный» нам понятны, мы уже изучили отдельно электрические явления (рис. 2) и магнитные явления (рис. 3), но почему тогда мы ведем речь об электромагнитном поле? Сегодня мы в этом разберемся.

Рис. 2. Электрическое поле

Рис. 3. Магнитное поле

Примеры электромагнитных явлений.

В микроволновке создаются сильные, а главное - очень быстро изменяющиеся электромагнитные поля, которые действуют на электрический заряд. А как мы знаем, в атомах и молекулах веществ содержится электрический заряд (рис. 4). Вот на него и действует электромагнитное поле, заставляя молекулы быстрее двигаться (рис. 5) - увеличивается температура и еда нагревается. Такую же природу имеют рентгеновские лучи, ультрафиолетовые лучи, видимый свет.

Рис. 4. Молекула воды является диполем

Рис. 5. Движение молекул, имеющих электрический заряд

В микроволновке электромагнитное поле сообщает веществу энергию, которая идет на нагревание, видимый свет сообщает рецепторам глаза энергию, которая идет на активацию рецептора (рис. 6), энергия ультрафиолетовых лучей идет на образование меланина в коже (появление загара, рис. 7), а энергия рентгеновских лучей заставляет чернеть пленку, на которой вы можем увидеть изображение своего скелета (рис. 8). Электромагнитное поле во всех этих случаях имеет разные параметры, поэтому и оказывает разное воздействие.

Рис. 6. Условная схема активации рецептора глаза энергией видимого света

Рис. 7. Загар кожи

Рис. 8. Почернение пленки при рентгене

Так что с электромагнитным полем мы сталкиваемся намного чаще, чем кажется, и уже давно привыкли к явлениям, которые с ним связаны.

Итак, нам известно, что электрическое поле возникает вокруг электрических зарядов (рис. 9). Здесь всё понятно.

Рис. 9. Электрическое поле вокруг электрического заряда

Если электрический заряд движется, то вокруг него, как мы изучали, возникает магнитное поле (рис. 10). Здесь уже возникает вопрос: движется электрический заряд, вокруг него есть электрическое поле, при чем здесь магнитное поле? Еще один вопрос: мы говорим «заряд движется». Но ведь движение относительно, и он может в одной системе отсчета двигаться, а в другой - покоиться (рис. 11). Значит, в одной системе отсчета магнитное поле будет существовать, а в другой нет? Но поле не должно существовать или не существовать в зависимости от выбора системы отсчета.

Рис. 10. Магнитное поле вокруг движущегося электрического заряда

Рис. 11. Относительность движения заряда

Дело в том, что есть единое электромагнитное поле, и источник у него единый - электрический заряд. Оно имеет две составляющие. Электрическое и магнитное поля - это отдельные проявления, отдельные компоненты единого электромагнитного поля, которые проявляются по-разному в разных системах отсчета (рис. 12).

Рис. 12. Проявления электромагнитного поля

Можно выбрать систему отсчета, в которой будет проявляться только электрическое поле, или только магнитное поле, или оба сразу. Однако нельзя выбрать систему отсчета, в которой и электрическая, и магнитная составляющая будет нулевой, то есть в которой электромагнитное поле перестанет существовать.

В зависимости от системы отсчета мы видим либо одну составляющую поля, либо другую, либо их вместе. Это как движение тела по окружности: если посмотреть на такое тело сверху, увидим движение по окружности (рис. 13), если со стороны - увидим колебания вдоль отрезка (рис. 14). В каждой проекции на ось координат круговое движение - это колебания.

Рис. 13. Движение тела по окружности

Рис. 14. Колебания тела вдоль отрезка

Рис. 15. Проекция круговых движений на ось координат

Другая аналогия - проецирование пирамиды на плоскость. Ее можно спроецировать в треугольник или квадрат. На плоскости это совершенно разные фигуры, но все это - пирамида, на которую смотрят с разных сторон. Но нет такого ракурса, при взгляде с которого пирамида исчезнет совсем. Она только будет выглядеть более похожей на квадрат или треугольник (рис. 16).

Рис. 16. Проекции пирамиды на плоскость

Рассмотрим проводник с током. В нем отрицательные заряды скомпенсированы положительными, электрическое поле вокруг него равно нулю (рис. 17). Магнитное поле не равно нулю (рис. 18), возникновение магнитного поля вокруг проводника с током мы рассматривали. Выберем систему отсчета, в которой электроны, образующие электрический ток, будут неподвижны. Но в этой системе отсчета относительно электронов будут двигаться положительно заряженные ионы проводника в обратную сторону: все равно возникает магнитное поле (рис. 18).

Рис. 17. Проводник с током, у которого электрическое поле равно нулю

Рис. 18. Магнитное поле вокруг проводника с током

Если бы электроны были в вакууме, в этой системе отсчета вокруг них возникало бы электрическое поле, ведь они не скомпенсированы положительными зарядами, однако магнитного поля не было бы (рис. 19).

Рис. 19. Электрическое поле вокруг электронов, находящихся в вакууме

Рассмотрим другой пример. Возьмем постоянный магнит. Вокруг него есть магнитное поле, но электрического нет. Действительно, ведь электрическое поле протонов и электронов компенсируется (рис. 20).

Рис. 20. Магнитное поле вокруг постоянного магнита

Возьмем систему отсчета, в которой магнит движется. Вокруг движущегося постоянного магнита возникнет вихревое электрическое поле (рис. 21). Как его выявить? Поместим на пути магнита металлическое кольцо (неподвижное в данной системе отсчета). В нем возникнет ток - это хорошо нам известное явление электромагнитной индукции: при изменении магнитного потока возникает электрическое поле, приводящее к движению зарядов, к появлению тока (рис. 22). В одной системе отсчета электрического поля нет, а в другой оно проявляется.

Рис. 21. Вихревое электрическое поле вокруг движущегося постоянного магнита

Рис. 22. Явление электромагнитной индукции

Магнитное поле постоянного магнита

В любом веществе электроны, которые вращаются вокруг ядра, можно представлять как маленький электрический ток, который протекает по окружности (рис. 23). Значит, вокруг него возникает магнитное поле. Если вещество не магнитится, значит, плоскости вращения электронов направлены произвольно и магнитные поля от отдельных электронов компенсируют друг друга, так как направлены хаотично.

Рис. 23. Представление вращения электронов вокруг ядра

В магнитных веществах как раз-таки плоскости вращения электронов ориентированы примерно одинаково (рис. 24). Поэтому магнитные поля от всех электронов складываются, и получается уже ненулевое магнитное поле в масштабе целого магнита.

Рис. 24. Вращение электронов в магнитных веществах

Вокруг постоянного магнита существует магнитное поле, а точнее магнитная составляющая электромагнитного поля (рис. 25). Можем ли мы найти такую систему отсчета, в которой магнитная составляющая обнуляется и магнит теряет свои свойства? Все-таки нет. И правда, электроны вращаются в одной плоскости (смотри рис. 24), в любой момент времени скорости электронов не направлены в одну и ту же сторону (рис. 26). Так что невозможно найти систему отсчета, где они все замрут и магнитное поле пропадет.

Рис. 25. Магнитное поле вокруг постоянного магнита

Таким образом, электрическое и магнитное поля - это разные проявления единого электромагнитного поля. Нельзя сказать, что в конкретной точке пространства есть только магнитное или только электрическое поле. Там может быть и одно, и другое. Все зависит от системы отсчета, из которой мы рассматриваем эту точку.

Почему же мы до этого говорили отдельно об электрическом и о магнитном полях? Во-первых, так сложилось исторически: люди давно знают о магните, люди давно наблюдали наэлектризованный о янтарь мех, и никто не догадывался, что эти явления имеют одну природу. А во-вторых, это удобная модель. В задачах, где нас не интересует взаимосвязь электрической и магнитной составляющих, их удобно рассматривать отдельно. Два покоящихся заряда в данной системе отсчета взаимодействуют через электрическое поле - мы применяем к ним закон Кулона, нас не интересует, что эти же электроны могут в какой-то системе отсчета двигаться и создавать магнитное поле, и мы успешно решаем задачу (рис. 27).

Рис. 27. Закон Кулона

Действие магнитного поля на движущийся заряд рассматривается в другой модели, и она тоже в рамках своей применимости отлично работает при решении ряда задач (рис. 28).

Рис. 28. Правило левой руки

Постараемся понять, как взаимосвязаны составляющие электромагнитного поля.

Стоит отметить, что точная связь достаточно сложна. Ее вывел британский физик Джеймс Максвелл. Он вывел знаменитые 4 уравнения Максвелла (рис. 29), которые изучаются в вузах и требуют знания высшей математики. Мы их изучать, конечно, не будем, но в нескольких простых словах разберемся, что они означают.

Рис. 29. Уравнения Максвелла

Опирался Максвелл на работы другого физика - Фарадея (рис. 30), который просто качественно описал все явления. Он делал рисунки (рис. 31), записи, которые очень помогли Максвеллу.

Рис. 31. Рисунки Майкла Фарадея из книги «Электричество» (1852)

Фарадей открыл явление электромагнитной индукции (рис. 32). Вспомним, в чем оно заключается. Переменное магнитное поле порождает ЭДС индукции в проводнике. Иными словами, переменное магнитное поле (да, в данном случае - не электрический заряд) порождает электрическое поле. Это электрическое поле является вихревым, то есть линии его замкнуты (рис. 33).

Рис. 32. Рисунки Майкла Фарадея к опыту

Рис. 33. Возникновение ЭДС индукции в проводнике

Кроме того, мы знаем, что магнитное поле порождается движущимся электрическим зарядом. Правильнее будет сказать, что оно порождается переменным электрическим полем. При движении заряда электрическое поле в каждой точке изменяется, и это изменение порождает магнитное поле (рис. 34).

Рис. 34. Возникновение магнитного поля

Можно заметить появление магнитного поля между обкладок конденсатора. Когда он заряжается или разряжается, между пластин возникает переменное электрическое поле, что в свою очередь порождает магнитное поле. В данном случае линии магнитного поля будут лежать в плоскости, перпендикулярной линиям электрического поля (рис. 35).

Рис. 35. Появление магнитного поля между обкладок конденсатора

А теперь посмотрим на уравнения Максвелла (рис. 29), ниже дана для ознакомления небольшая их расшифровка.

Значок - дивергенция - это математический оператор, он выделяет ту составляющую поля, которая имеет источник, то есть линии поля на чем-то начинаются и заканчиваются. Посмотрите на второе уравнение: эта составляющая магнитного поля равна нулю : линии магнитного поля ни на чем не начинаются и не заканчиваются, магнитного заряда не существует. Посмотрите на первое уравнение: такая составляющая электрического поля пропорциональна плотности заряда . Электрическое поле создается электрическим зарядом .

Наиболее интересны следующих два уравнения. Значок - ротор - это математический оператор, выделяющий вихревую составляющую поля. Третье уравнение означает, что вихревое электрическое поле создается изменяющимся во времени магнитным полем ( - это производная, которая, как вы знаете из математики, означает скорость изменения магнитного поля). То есть речь идет об электромагнитной индукции.

Четвертое уравнение показывает, если не обращать внимания на коэффициенты пропорциональности: вихревое магнитное поле создается изменяющимся электрическом полем , а также электрическим током ( - плотность тока). Речь идет о том, что мы хорошо знаем: магнитное поле создается движущимся электрическим зарядом и .

Как видите, переменное магнитное поле может порождать переменное электрическое, а переменное электрическое поле в свою очередь порождает переменное магнитное и так далее (рис. 36).

Рис. 36. Переменное магнитное поле может порождать переменное электрическое, и наоборот

В результате в пространстве может образовываться электромагнитная волна (рис. 37). Эти волны имеют разные проявления - это и радиоволны, и видимый свет, ультрафиолет и так далее. Об этом поговорим на следующих уроках.

Рис. 37. Электромагнитная волна

Список литературы

  1. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учрежде-ний. - М.: Дрофа, 2005.
  2. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  1. Интернет портал «studopedia.su» ()
  2. Интернет портал «worldofschool.ru» ()

Домашнее задание

  1. Можно ли обнаружить магнитное поле в системе отсчета, связанной с одним из равномерно движущихся электронов в потоке, который создается в кинескопе телевизора?
  2. Какое поле возникает вокруг электрона, движущегося в данной системе отсчета с постоянной скоростью?
  3. Какое поле можно обнаружить вокруг неподвижного янтаря, заряженного статическим электричеством? Вокруг движущегося? Ответы обоснуйте.

Связь магнитного поля с током привела к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Если вокруг проводников с токами возникает магнитное поле, то должно существовать и обратное явление – возникновение электрического тока в замкнутом проводнике под действием магнитного поля. Эта задача была блестяще решена в 1831 г. английским физиком Фарадеем, открывшим явление электромагнитной индукции – была доказана связь между электрическими и магнитными явлениями, что послужило толчком для разработки теории электромагнитного поля.

1. Электромагнитная индукция. Явление электромагнитной индукции состоит в том, что при всяком изменении магнитного потока, пронизывающего замкнутый контур проводника, в проводнике возникает электродвижущая сила (э.д.с.) индукции, вызывающая появление электрического тока, кот наз. индукционным. Э.д.с. индукции возникает так же и в незамкнутом проводнике при его движении в магнитном поле, при котором проводник пересекает линии магнитного поля.

Опыт 1 : если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки.

Опыт 2: силу тока в контуре 1 можно изменять с помощью реостата. Этот ток создает магнитное поле, пронизывающее контур 2, если увеличивать ток , поток магнитной индукции через контур 2 будет расти. Это приведет к появлению в контуре 2 индукционного тока , регистрируемого гальванометром. Электромагнитную индукцию можно вызвать:

1. Уменьшая ток , что обусловит убывание магнитного потока через второй контур и приведет к появлению в нем индукционного тока иного направления, чем в первом случае.

2. Индукционный ток можно вызвать также приближая контур 2 к контуру 1 или удаляя второй контур от первого.

3. Не перемещая контур 2 поступательно, а поворачивая его так, чтобы изменялся угол между нормалью к контуру и направлением поля.

Опытным путем было установлено, что значение индукционного тока (э.д.с) не зависит от способа изменения потока магнитной индукции , а определяется лишь скоростью его изменения. т.е. значением . Этот закон является универсальным. (1821г.)

Профессор петербургского университета Ленц исследовал связь между направлением индукционного тока и хорактером вызвавшего его изменения магнитного потока: правило Ленца:индуцируемая в контуре э.д.с. вызывает ток такого направления, что магнитное поле этого тока препятствует изменению магнитного потока.



Напр., при приближении контура 2 к контуру 1 возникает ток , магнитный момент которого направлен противоположно полю тока (угол между векторами и равен ). Следовательно, на контур 2 будет действовать сила, отталкивающая его от контура 1. При удалении контура 2 от контура 1 возникает ток , момент которогосовпадает по направлению с полем тока , так что сила, действующая на контур 2, направлена к контуру 1.

Ленц получил это правило из опыта, анализируя многочисленные эксперименты. На самом деле, действие этого правила гораздо шире – оно выражает общий принцип, согласно которому любая система стремится сохранить устойчивое состояние равновесия и противодействует всяким изменениям этого состояния.

Формула, объединяющая в себе закон Фарадея и правило Ленца явл. математическим выражением основного закона электромагнитнойц индукции.

Основной закон электромагнитной индукции (закон Фарадея – Максвелла ). Электродвижущая сила индукции, возникающая в замкнутом контуре, пропорциональна скорости изменения магнитного потока со временем: , где число витков контура, потокосцепление, если все витки катушки пронизываются одним и тем же потоком, то .

Замечание 1. Знак минус отражаетправило Ленца. В большинстве случаев при числовых расчетах этот знак может быть опущен.

Замечание 2. Для замкнутого контура .

Э.д.с. выражается в вольтах .

Для доказательства закона Фарадея используем закон сохранения энергии. Рассмотрим замкнутый контур, в котором один из проводников может перемещаться. Поместим контур в однородное поле, перпендикулярное плоскости чертежа и направленное за чертеж. Пусть проводник движется со скоростью . Сила, действующая на движущийся проводник. Работа, которая производится на отрезке : . Энергия источника расходуется на тепло и работу: . С другой стороны , получаем . Величина играет роль э.д.с., т.к. она приводит к появлению в замкнутой цепи электрического тока. Следовательно, эта величина и является э.д.с. электромагнитной индукции.

Очевидно, что магнитный поток только в тех случаях, когда проводник пересекает линии магнитной индукции поля, поэтому называют скоростью пересечения проводником линий магнитной индукции.

Например, в случае прямолинейного проводника, кот. движется в однородном магнитном поле перпендикулярно линиям магнитной индукции, э.д.с. индукции в проводнике , где угол между проводником и направлением его скорости .

Разность потенциалов на концах проводника найдем из обобщенного закона Ома. Т.к. электрического тока в проводнике нет , то .

Замечание. В явлениях электромагнитной индукции магнитный поток сквозь контур может изменяться как при движении контура или отдельных его участков, так и при изменении во времени магнитного поля – пользуются законом Фарадея для определения э.д.с. индукции.

При движении проводников в магнитном поле этот закон применим лишь в тех случаях, когда рассматриваемый контур проходит через одни и те же точки движущегося проводника. В противном случае э.д.с. индукции находят, исследуя силы Лоренца, действующие на свободные заряды в движущемся проводнике, т. е. действующая в цепи э.д.с. измеряется работой сторонних сил при перемещении вдоль замкнутой цепи единичного положительного заряда , где перемещаемый заряд.

Пример. В однородное магнитное поле с индукцией 0,1Т расположена прямоугольная рамка , подвижная сторона которой длиной 0,1 м перемещается со скоростью перпендикулярно линиям индукции поля. Определить э.д.с. индукции, возникающую в контуре.

Решение : решим задачу двумя способами, применив закон Фарадея или рассматривая силы, действующие на свободные электроны в движущейся проволоке (силы Лоренца).

1. при движении проводникаплощадь рамки увеличивается, магнитный поток возрастает, т.е. по закону Фарадея действует э.д.с. индукции. . Знак «-« показывает, что э.д.с. индукции действует в контуре в таком направлении, при котором связанная с ним правилом правого винта нормаль к контуру противоположна вектору В (направлена к наблюдателю). Т.е. э.д.с. индукции и индукционный ток направлены в контуре против часовой стрелки.

При решении задачи в обоих случаях допущена неточность: не принималось в расчет магнитное поле, созданное индукционным током. Оба рассмотренных метода дают правильный ответ при условии достаточно большого сопротивления цепи.

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением : . считается положительной, если магнитный момент соответствующего ей индукционного тока в контуре образует острый угол с линиями магнитной индукции того поля, которое наводит этот ток.

Природа сторонних сил, приводящих к появлению э.д.с. электромагнитной индукции : сила Лоренца, которая действует на заряд, движущийся в магнитном поле.

Можно рассматривать изменение магнитного потока в неподвижном контуре, напр., уменьшать величину магнитной индукции. В этом случае сила Лоренца отсутствует (нет упорядоченного движения электрических зарядов), но э.д.с. возникает и

Краткий конспект 8 класс

Тепловые явления

Температура тела зависит от скорости движения молекул.

Беспорядочное движение молекул называют тепловым движением.

Внутренняя энергия – это сумма потенциальной и кинетической энергии всех молекул, из которых состоит вещество.

Внутренняя энергия не зависит от мех. движения тела или его положения относительно других тел.

При повышении t˚ увеличивается.

Меняется 2-мя способами :

1. Путем совершения работы;

2. Путем теплообмена (теплопередачи)

Теплопередача:

1. Теплопроводность – передача E от одной части тела к другой в результате теплового движения молекул (тв. тела)

2. Конвекция – перемещение самого вещества в жидкостях и газах. (жидкость и газ)

3. Излучение – испускание лучей (не нужна среда, возможно в вакууме)

Количество теплоты – энергия, получаемая или отдаваемая телом при теплопередачи.

Процессы:

I. Нагревание или охлаждение (не меняя агрегатного состояния вещества)

m – масса

Изменение температуры

c – удельная теплоемкость, численно равная количеству теплоты, которое необходимо сообщить каждому кг данного вещества, чтобы повысить его t˚ на 1˚С.

II. Сгорание топлива

m – масса

q – удельная теплота сгорания топлива – физическая величина, показывающая, какое количество теплоты выделяется при полной сгорании топлива массой 1 кг.


3. Парообразование (испарение, кипение)

Конденсация

5. Десублимация

6. Сублимация (возгонка)

III. Плавление и кристаллизация

процесс плавления или кристаллизации осуществляется на горизонтальном участке графика АВ при постоянной температуре, называемой температурой плавления. (табличная величина)

Этот график представлен на примере плавлении льда.

Точка А – только лед

Промежуток АВ – лед с водой

Точка В – только вода

Плавление – Q подводится системе

Кристаллизация – Q отводится от системы

m – масса

λ – удельная теплота плавления показывает какое количество теплоты необходимо передать каждому кг вещества, взятому при температуре плавления, чтобы его полностью расплавить.

IV. Парообразование и конденсация

процесс парообразования или конденсации осуществляется на горизонтальном участке графика АВ при постоянной температуре, называемой температурой кипения. (табличная величина)

Этот график представлен на примере кипения воды.

Точка А – только вода

Участок АВ – вода и ее пар

Точка В – только пар


Парообразование – Q подводится системе

Конденсация – Q отводится от системы

m – масса

L – удельная теплота парообразования показывает какое количество теплоты необходимо сообщить каждому кг жидкости, взятой при температуре кипения, чтобы обратить жидкость в пар.

Насыщенный пар – пар, находящийся в динамическом равновесии со своей жидкостью. (сколько молекул переходит из жидкости в пар, столько же и переходит обратно, из пара в жидкость.)

ü Абсолютная влажность воздуха – плотность водяного пара в воздухе.

ü Относительная влажность воздуха – отношение абсолютной влажности к плотности насыщенного пара при той же температуре.

Точка росы – температура, при которой пар становится насыщенным.

Гигрометр и психрометр – приборы для измерения влажности воздуха.

Тепловые двигател и – это машины, в которых происходит превращение внутренней энергии топлива в механическую энергию.

КПД – отношение совершенной полезной работы двигателя, к энергии, полученной от нагревателя.

Электрические явления

Электростатика – раздел, изучающий покоящиеся заряды.

Наэлектризованные тела или притягиваются или отталкиваются.

Физическая величина, характеризующая степень электризации тела, называется электрическим зарядом.

Способы электризации:

1) Соприкосновение (трение)

2) Касание

3) Через влияние

Условно считают, что стеклянная палочка, потертая о шелк – заряжается положительно , а эбонитовая палочка, потертая о шерсть – отрицательно.

Одноименно заряженные тела всегда отталкиваются, разноименно заряженные тела – притягиваются.

Вокруг заряженного тела (или неподвижного заряда) существует электрическое поле . При взаимодействии полей возникают кулоновские силы.

И – заряды в Кл

расстояние между зарядами

k – коэффициент

Расчет силы кулона возможно для трех случаев :

1. Взаимодействие двух заряженных сфер (r – от центра до центра)

2. Взаимодействие заряженной сферы и точечного заряда (заряженное тело, размерами которого можно пренебречь)

3. Взаимодействие двух точечных зарядов

Электроскоп – прибор для измерения электрического заряда.

Электрический ток – направленное и упорядоченное движение заряженных частиц. (в металлах – движение электронов)

Все вещества по проводимости эл. тока делятся на 3 группы:

1) Проводники (металлы, растворы – содержат в обычных условиях достаточно много заряженных частиц)

2) Полупроводники – вещества, содержащие свободные заряженные частицы в меньшей степени (германий, кремний)

3) Диэлектрики (непроводники) – не имеют свободных заряженных частиц – резина, эбонит, дистиллир. вода.

Изолятор – тело, изготовленное из диэлектрика.

Электрон – частица с наименьшим отрицательным зарядом.

Центр – ядро (массивное и положительное): протоны(+) и нейтроны(0)

Вокруг ядра – электроны (легкие и отрицательные)

Нормальное состояние – нейтральный атом – кол-во протонов = кол-во электронов

Положительный ион – атом, потерявший один или несколько электронов

Отрицательный ион – атом, присоединивший лишний электрон

Условия возникновения электрического тока:

1) проводник

2) наличие электрического поля

3) источник тока – устройство, в котором происходит разделение зарядов

4) замкнутая электрическая цепь

Эл. цепь состоит:

ü источника тока

ü потребителей

ü подводящих проводов

ü измерительных приборов

Амперметр – это прибор для измерения силы тока в цепи; включается последовательно!

Вольтметр – это прибор для измерения напряжения в цепи или на ее участке; включается параллельно!

Сила тока – физическая величина, определяемая количеством или величиной заряда, протекающего через поперечное сечение проводника за единицу времени. Ампер

Напряжение – физическая величина, численно равная отношению работы, которую совершает электрическое поле при перемещении заряда, к величине этого заряда. Вольт

Сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

Сопротивление – физическая величина, характеризующая свойства проводника в большей или меньшей степени влиять на прохождение заряда.

l длина проводника

S – площадь поперечного сечения проводника

– удельное сопротивление (зависит от материала проводника) дается в таблицах!

Закон Ома для участка цепи:

Величина R – постоянная для данного проводника => не зависит от I и U.

Реостат – прибор для регулирования силы тока в цепи.

Последовательное соединение проводников Параллельное соединение проводников

Работа электрического тока

Мощность электрического тока – физическая величина, характеризующая быстроту совершаемой работы.

Или – на практике

Закон Джоуля-Ленца: (нагревание проводника)

Короткое замыкание – соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлению участка цепи.

Электромагнитные явления

Магнитное поле существует вокруг любого проводника с током, т.е. вокруг движущихся зарядов.

Движущиеся заряды (заряженные частицы) – источник магнитного поля

Изобразить м.п. можно с помощью магнитных (силовых) линий. Магнитные линии замыкаются сами на себя (не имеют начала и конца) или идут из бесконечности в бесконечность.

Магнитное поле проводника с током:

Для определения направления линий м. поля пользуются 2-мя правилами:

1) правило буравчика

Если поступательное движение буравчика совпадает с направлением тока в проводнике, то вращательное движение рукоятки буравчика совпадает с направлением линий магнитного поля.

2) правило обхвата правой руки

если большой палец правой руки направить по направлению тока, то 4 пальца покажут направление линий магнитного поля.

Магнитное поле катушки с током:

Внутри катушки линии параллельны и не пересекаются. Всегда идут с севера на юг. Направление тока указывает на северный полюс.

Определить направление линий магнитного поля внутри катушки можно с помощью правила правой руки:

Если 4 пальца правой руки направить по направлению тока в витках катушки (обхватить катушку по току), то отставленный большой палец покажет направление линий магнитного поля внутри катушки.

Катушка с сердечником внутри называется – электромагнитом.

Постоянные магниты:

Магнитное поле постоянного магнита обусловлено кольцевыми токами Ампера. (вращение электронов в атомах вещества в одном направлении)

Магнитные полюса Земли не совпадают с её географическими полюсами.

Северный магнитный полюс – N (южный геогр. полюс)

Южный магнитный полюс – S (северный геогр. полюс)

Силовая характеристика магнитного поля –

вектор магнитной индукции B.

Вектор представляет собой касательную к линиям магнитного поля и направлен так же как и линии магнитного поля.

Действие магнитного поля на помещенные в него тела:

Проводник с током Заряженная частица
Правило левой руки
Сила Ампера Сила Лоренца
I – сила тока в проводнике B – магнитная индукция l – длина проводника, которая находится в м.п. q – заряд частицы (по модулю) Кл V – скорость частицы B – магнитная индукция
Если левую руки расположить так, чтобы линии магнитного поля входили в ладонь, а 4 пальца указывали на направление тока в проводнике, то отставленный на 90˚ большой палец покажет направление силы Ампера. Если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а 4 пальца указывали на направление движения (скорости) положительно заряженной частицы, то отставленный на 90˚ большой палец покажет направление силы Лоренца. (для отрицательной частицы – 4 пальца против направления скорости частицы)

Световые явления

Оптика – это раздел физики, изучающий световые явления и закономерности.

Свет – это электромагнитная волна.

Точечный источник света – размеры светящегося тела намного меньше расстояния на котором мы оцениваем его действие.

Световой луч – линия, вдоль которой распространяется энергия от источника света.

Тень – та область пространства, в которую на попадает свет от источника.

Полутень – попадает свет от части источника.

Световая энергия, распространяющаяся между двумя лучами, называется световым пучком.

Законы геом. оптики:

1) Закон отражения света

1. Луч падающий, луч отраженный и перпендикуляр, восстановленный в точку падения, лежат в одной плоскости.

2. Угол падения равен углу отражения.

Угол падения – угол между падающий лучом и перпендикуляром к поверхности, восстановленным в точке падения луча на поверхность.

Угол отражения – угол между отраженным лучом и перпендикуляром к поверхности, восстановленным в точке падения луча на поверхность.

Плоское зеркало:

Изображение в плоском зеркале находится за зеркалом на прямой, перпендикулярной поверхности зеркала, а расстояние от зеркала до изображения ОВ равно расстоянию от объекта до зеркала АО.

2) Закон преломления света

Оптическая плотность среды характеризуется различной скоростью распространения света.

При переходе из одной среды в другую, луч изменяет свое направление на границе этих сред – преломляется .

1. Луч падающий, преломленный и перпендикуляр, восстановленный в точку падения к границе двух сред, лежат в одной плоскости.

2. Отношение синуса угла падения к синуса угла преломления, есть величина постоянная для данных двух сред и называется показателем преломления второй среды относительно первой.

Если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения.

Преломленный луч в этом случае «прижимается» к перпендикуляру.

Если свет идет из среды оптически более плотной в менее плотную среду, то угол преломления всегда больше угла падения.

Преломленный луч в этом случае «прижимается» к границе раздела сред.

Луч, направленный перпендикулярно к границе раздела двух сред, проходит без преломления.

Линза – прозрачное тело, ограниченное двумя сферическими поверхностями.

Виды линз:

Линзы (по оптическим свойствам)

Оптическая сила линзы:

Изображением любой точки будет точка. Изображение стрелки – стрелка.

Построение изображения любого точечного источника (точки предмета) в линзе происходит по двум лучам.

1) Луч, идущий через центр линзы не преломляется

2) Луч, идущий параллельно главной оптической оси , после линзы преломляется в т. фокуса линзы

На пересечении этих двух лучей располагается точка, которая является изображением источника.

Изображение предмета строится аналогичным образом.

Формула тонкой линзы:

10) Характеристики участка цепи:

Сила тока - , измеряется с помощью амперметра;

Напряжение - , измеряется вольтметром;

Сопротивление - , измеряется омметром.

11) Закон Ома для участка цепи: .

12) Два вида соединения проводников:

Последовательное (см. рис. 4)

Рис. 4. Последовательное соединения проводников

Параллельное (см. рис. 5)

Рис. 5. Параллельное соединение проводников

13) Работа тока: .

14) Мощность тока: .

15) Количество теплоты, которая выделяется при прохождении тока через проводник: .

16) Электрический ток в различных средах:

В металлах происходит направленное движение свободных электронов;

В жидкостях - направленное движение свободных ионов, образующихся в результате электролитической диссоциации . Закон электролиза:

В газах - направленное движение свободных ионов и электронов, образующихся в

результате ионизации;

- в полупроводниках - направленное движение свободных электронов и дырок;

17) Магниты:

Электромагниты;

Постоянные:

природные;

искусственные.

18) Вокруг любой заряженной частицы, а следовательно, вокруг проводника с током существует магнитное поле .

19) Магнитное поле - особая форма материи, которая существует вокруг движущихся заряженных частиц или тел и действует с некоторой силой на другие заряженные частицы или тела, движущиеся в этом поле.

20) Линии магнитного поля - условные линии, вдоль которых в магнитном поле устанавливаются оси маленьких магнитных стрелок:

Направление линий магнитного поля совпадает с направлением, на которое указывает северный полюс магнитной стрелки (см. рис. 6);

Направление линий магнитного поля проводника с током можно определить с помощью правила правой руки или правила буравчика (см. рис. 7);

Линии магнитного выходят из северного полюса и входят в южный полюс;

Линии магнитного поля всегда замкнуты.

21) На проводник с током в магнитном поле действует сила Ампера . Её направление определяется по правилу левой руки (см. рис. 8).

Рис. 7. Правило правой руки и правило буравчика

Рис. 8. Правило левой руки

22) Явление электромагнитной индукции - явление порождения в пространстве электрического поля переменным магнитным полем.

На этом уроке мы вспомнили различные факты, касающиеся электромагнитных явлений, изученных ранее, а также обсудили общую электромагнитную картину мира.

Впервые вне лаборатории электрическая дуга была применена в 1845 году в Парижской национальной опере, чтобы воспроизвести эффект восходящего солнца.

В Таиланде при строительстве линий электропередач возникли проблемы. Первая касалась того, что обезьяны, подражая электромонтёрам, по опорам забираются на провода и, запутывая их, создают короткое замыкание. Слоны представляли собой вторую проблему, так как они вырывали опоры из земли.

Магнитное поле Земли периодически меняет свою полярность, совершая как вековые колебания, длительностью 5-10 тыс. лет, так и полностью переориентируясь (меняются местами магнитные полюса) 2-3 раза в течение миллиона лет. Об этом свидетельствуют «вмороженное» магнитное поле в осадочные и вулканические породы далёких эпох. Однако геомагнитное поле Земли не совершает хаотических изменений, а подчиняется определённому расписанию.

В древних архивах сохранились записи, свидетельствующие о том, что императора Нерона, страдавшего ревматизмом, лечили электрованнами. Для этого в деревянную кадку с водой помещали электрических скатов. Находясь в такой ванне, император подвергался действию электрических разрядов и полей.

В прошлом веке в Швейцарии была изобретена электрическая няня. Изобретатель предложил подкладывать под детские пелёнки две изолированные металлические сетки, разделённые сухой прокладкой. Эти сетки были соединены с низковольтным источником тока, а также с электрическим звонком. Когда прокладка намокала, цепь замыкалась, и звонок сообщал матери о необходимости сменить пелёнку.

В тех регионах России, где бывают сильные морозы зимой, возникает проблема слива нефтепродуктов из железнодорожных цистерн, так как вязкость нефтепродуктов при низкой температуре слишком высокая. Учёные дальневосточных институтов разработали технологию электроиндукционного нагрева цистерн (см. рис. 9), позволяющую значительно сократить энергозатраты, так как для разогревания цистерн паром необходимо около 15 тонн топлива.

Рис. 9. Электроиндукционный нагрев цистерн

Для аварийных ситуаций, когда замерзают системы отопления и водоснабжения, разработан ручной электроиндукционный инструмент, обеспечивающий быстрый разогрев трубопроводов и высокую безопасность работ.

Даже на стреляных гильзах и патронах сохраняются отпечатки пальцев, уложившего их в оружие человека. Эти отпечатки могут быть выявлены по методике, разработанной специалистами Саратовского юридического института. Поместив гильзу или патрон в электрическое поле в качестве электрода, напыляют на него в вакууме тонкую металлическую плёнку, и на ней становятся видны отпечатки, которые возможно идентифицировать.

Задача 1

На каком из рисунков правильно изображены полюсы магнитов (см. рис. 10)?

Рис. 10. Иллюстрация к задаче

Решение

Магнитными линиями для постоянного магнита называются линии, которые начинаются на северном магнитном полюсе и заканчиваются на южном, вне самого магнита. Внутри магнита эти линии замыкаются, но уже направлены от южного полюса к северному магнитному полюсу.

На первом рисунке полюсы изображены неправильно, так как магнитные линии направлены от южного полюса к северному.

На втором рисунке полюсы изображены неправильно, так как магнитные линии направлены от южного полюса к северному.

На третьем рисунке полюсы изображены верно, так как магнитные линии направлены от северного полюса к южному.

На четвёртом рисунке, по всей вероятности, имелись в виду два каких-то одинаковых полюса.

Ответ: на третьем рисунке полюсы изображены верно.

Попробуйте самостоятельно ответить на такой вопрос: в какой из этих точек действие магнита самое сильное, а в каких - самое маленькое (см. рис. 11)?

Рис. 11. Иллюстрация к задаче

Решить эту задачу можно, вспомнив, как распределяются магнитные линии в пространстве возле постоянного магнита.

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Class-fizika.narod.ru ().
  2. Clck.ru ().
  3. Clck.ru ().

Домашнее задание

  1. Что подтверждает существование магнитного поля Земли?
  2. Дайте определение магнитных линий. Что представляют собой магнитные линии прямого тока, катушки с током?
  3. Что дало науке создание электромагнитной картины мира?
  4. Сила Ампера. Правило левой руки.
  5. На железный проводник длиной 10 м и сечением 2 мм 2 подано напряжение 12 мВ. Чему равна сила тока, протекающего по проводнику?
  6. Электрические лампы сопротивлением 200 Ом и 400 Ом соединены параллельно и подключены к источнику тока. Как соотносятся количества теплоты Q 1 и Q 2 , выделяемые лампами за одно и то же время?

Формулы электричества и магнетизма. Изучение основ электродинамики традиционно начинается с электрического поля в вакууме. Для вычисления силы взаимодействия между двумя точными зарядами и вычисления напряженности электрического поля, созданного точечным зарядом, нужно уметь применять закон Кулона. Для вычисления напряженностей полей, созданных протяженными зарядами (заряженной нитью, плоскостью и т.д.), применяется теорема Гаусса. Для системы электрических зарядов необходимо применять принцип

При изучении темы "Постоянный ток" необходимо рассмотреть во всех формах законы Ома и Джоуля-Ленца При изучении "Магнетизма" необходимо иметь в виду, что магнитное поле порождается движущимися зарядами и действует на движущиеся заряды. Здесь следует обратить внимание на закон Био-Савара-Лапласа. Особое внимание следует обратить на силу Лоренца и рассмотреть движение заряженной частицы в магнитном поле.

Электрические и магнитные явления связаны особой формой существования материи - электромагнитным полем. Основой теории электромагнитного поля является теория Максвелла.

Таблица основных формул электричества и магнетизма

Физические законы, формулы, переменные

Формулы электричество и магнетизм

Закон Кулона:
где q 1 и q 2 - величины точечных зарядов, ԑ 1 - электрическая постоянная;
ε - диэлектрическая проницаемость изотропной среды (для вакуума ε = 1),
r - расстояние между зарядами.

Напряженность электрического поля:

где Ḟ - сила, действующая на заряд q 0 , находящийся в данной точке поля.

Напряженность поля на расстоянии r от источника поля:

1) точечного заряда

2) бесконечно длинной заряженной нити с линейной плотностью заряда τ:

3) равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда σ:

4) между двумя разноименно заряженными плоскостями

Потенциал электрического поля:

где W - потенциальная энергия заряда q 0 .

Потенциал поля точечного заряда на расстоянии r от заряда:

По принципу суперпозиции полей, напряженность:

Потенциал:

где Ē i и ϕ i - напряженность и потенциал в данной точке поля, создаваемый i-м зарядом.

Работа сил электрического поля по перемещению заряда q из точки с потенциалом ϕ 1 в точку с потенциалом ϕ 2 :

Связь между напряженностью и потенциалом

1) для неоднородного поля:

2) для однородного поля:

Электроемкость уединенного проводника:

Электроемкость конденсатора:

Электроемкость плоского конденсатора:

где S - площадь пластины (одной) конденсатора,

d - расстояние между пластинами.

Энергия заряженного конденсатора:

Сила тока:

Плотность тока:

где S - площадь поперечного сечения проводника.

Сопротивление проводника:

l - длина проводника;

S - площадь поперечного сечения.

Закон Ома

1) для однородного участка цепи:

2) в дифференциальной форме:

3) для участка цепи, содержащего ЭДС:

Где ε - ЭДС источника тока,

R и r - внешнее и внутреннее сопротивления цепи;

4) для замкнутой цепи:

Закон Джоуля-Ленца

1) для однородного участка цепи постоянного тока:
где Q - количество тепла, выделяющееся в проводнике с током,
t - время прохождения тока;

2) для участка цепи с изменяющимся со временем током:

Мощность тока:

Связь магнитной индукции и напряженности магнитного поля:

где B - вектор магнитной индукции,
μ √ магнитная проницаемость изотропной среды, (для вакуума μ = 1),
µ 0 - магнитная постоянная ,
H - напряженность магнитного поля.

Магнитная индукция (индукция магнитного поля):
1) в центре кругового тока
где R - радиус кругового тока,

2) поля бесконечно длинного прямого тока
где r - кратчайшее расстояние до оси проводника;

3) поля, созданного отрезком проводника с током
где ɑ 1 и ɑ 2 - углы между отрезком проводника и линией, соединяющей концы отрезка и точкой поля;
4) поля бесконечно длинного соленоида
где n - число витков на единицу длины соленоида.