Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

§4.1. волновые явления

Акустические и электромагнитные волны, распространяющиеся в различных средах и устройствах, подчиняются единым волновым законам. Это явления возбуждения волн конкретными источниками, отражения и преломления волн на границе раздела сред, рассеяние на неоднородностях, рефракция (искривление траектории распространения волн), поглощение энергии, интерференция.

Распространение волн любой природы легко понять и объяснить, если обратиться к принципу Гюйгенса: каждая точка среды, вовлеченная в волновое движение, становится источником новой волны, называемой элементарной волной. Наблюдаемый волновой фронт представляет собой результат сложения множества элементарных волн (рис. 1.1). Принцип Гюйгенса справедлив для всех видов волн, в том числе для акустических и электромагнитных.

Рис. 1.1. Положение фронта волны в разные моменты времени,

определяемое на основе принципа Гюйгенса

Направление распространения волны обычно называют лучом. Волновой фронт перпендикулярен лучу. У цилиндрических и сферических волн, распространяющихся от источника возбуждения, лучи направлены радиально, а волновые фронты представляют собой соответственно цилиндры или сферы (рис. 1.2 а ). В случае плоского или удаленного источника возникают плоские волны. В них лучи параллельны, а волновые фронты представляют собой плоскости (рис. 1.2б ).

Если на пути распространения волны встречается граница со средой, свойства которой отличаются от свойств среды распространения, наблюдается эффект частичного или полного отражения, а также частичного (а в некоторых случаях и полного) прохождения во вторую среду. Поскольку фронт волны перпендикулярен направлению распространения волны в однородной среде, то из простых геометрических построений доказывается равенство углов падения и отражения волн (рис. 1.3). Однако в отличие от электромагнитных волн для акустических в ряде случаев может наблюдаться эффект расщепления волн и появление волнового луча, отраженного под другим углом (см. лекцию 15).

Направление распространения преломленных волн зависит от соотношения скорости распространения волн в первой и второй средах (рис. 1.4). Анализ поведения волн на границе раздела сред легко выполнить на основе применения принципа Гюйгенса и рассмотрения элементарных волн, возбуждаемых на границе.

Рис. 1.2. Волновые фронты и лучи:

а – в радиально распространяющейся волне;б – в плоской волне

Рис. 1.3. Отражение плоской волны на границе раздела сред

Если свойства среды, влияющие на скорость распространения волны, меняются, то может наблюдаться такое явление, как рефракция. Рефракцией называется искривление траектории распространения волны в неоднородной среде.

Рис. 1.4. Преломление плоской волны на границе раздела сред

Если на пути распространения волны встречается какое-либо тело, то это приводит к нарушению структуры поля. Например, наблюдается эффект огибания волнами препятствия. В физике подобное явление называют дифракцией . Возникающая при этом картина поля существенно зависит от соотношения размеров препятствий и длины волны. На рис. 1.5 показано, как меняется структура поля плоской волны, «просачивающейся» через отверстие малых размеров. В ряде случаев анализ дифрагированного поля можно вновь выполнить на основе рассмотрения элементарных волн и принципа Гюйгенса.

Рис.1.5. Дифракция плоской волны на отверстии малых размеров

Возникновение дополнительных акустических или электромагнитных полей в результате дифракции соответствующих волн на препятствиях, помещенных в среду, на неоднородностях среды, а также на неровных и неоднородных границах сред, называется рассеянием волн. При рассеянии результирующее поле можно представить в виде суммы первичной волны, существовавшей в отсутствие препятствий, и рассеянной (вторичной) волны, возникшей в результате взаимодействия первичной волны с препятствиями. Если препятствий много, то общая картина поля образуется суммированием повторно и многократно рассеянных волн.

Еще одно важное понятие, используемое в теории волновых процессов, – интерференция волн. Интерференцией волн называется сложение в пространстве двух или нескольких волн, при котором в разных точках пространства получается усиление или ослабление амплитуды результирующей волны. Интерференция наблюдается у волн любой природы, в том числе, у акустических и электромагнитных.

Рис. 1.6. Интерференционная картина сложения волн двух источников

Физическая природа волнМеханические
Упругие
На поверхности
жидкости
Электромагнитные
световые
рентген
Звуковые
радиоволны
сейсмические

Механическая волна – колебание частиц вещества распространяющееся в пространстве.

Точки среды, в которой распространяются волны, колеблющиеся в одной фазе, называются волновыми поверхностями.

Для возникновения механической волны необходимо два условия:

Наличие среды.
Наличие источника колебаний.

Сопоставляя направление распространения волн и направление колебаний точек среды, можно выделить волны продольные и волны поперечные.

Волны, в которых направление колебаний точек возбужденной среды параллельно направлению распространения волн, называются продольными.

Волны, в которых направление колебаний точек возбужденной среды перпендикулярно направлению распространения волн, называются поперечным

Волны, в которых направление
колебаний точек возбужденной среды
перпендикулярно направлению
распространения волн, называются
поперечными.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Таким образом, волна на поверхности жидкости представляет собой

Волны на
поверхности
жидкости не
являются ни
продольными, ни
поперечными. Таким
образом, волна на
поверхности
жидкости
представляет собой
суперпозицию
продольного и
поперечного
движения молекул.

Круговые волны на поверхности жидкости

Наблюдение волн на поверхности жидкости
позволяет изучить и визуально представить многие
волновые явления, общие для разных типов волн:
интерференцию, дифракцию, отражение волн и т.д.

Свойства механических волн

Все волны доходя до границы раздела
двух сред испытывают отражение

Если волна переходит из одной среды в другую, падая на границу раздела двух сред под некоторым углом, отличным от нуля, то она испытывает пр

Если волна переходит из одной среды в
другую, падая на границу раздела двух сред
под некоторым углом, отличным от нуля,
то она испытывает преломление

Волна может огибать препятствия, размеры которых соизмеримы с ее длиной. Явление огибания волнами препятствий называется дифракцией

Источники волн, колеблющиеся с одинаковой частотой и постоянной разностью фаз называются когерентными. Как и любые волны, образованные ко

Источники волн, колеблющиеся с одинаковой
частотой и постоянной разностью фаз
называются когерентными.
Как и любые волны, образованные когерентными
источниками, могут накладываться друг на друга, и
в результате наложения наблюдается
интерференция волн.

Звук – это упругие волны, распространяющиеся в газах, жидкостях, твердых телах и воспринимаемы ухом человека и животных. Механические волн

Звук – это упругие волны,
распространяющиеся в газах, жидкостях,
твердых телах и воспринимаемы ухом
человека и животных.
Механические волны, которые вызывают
ощущение звука, называют звуковыми
волнами.

Звуковые волны
представляют собой
продольные волны, в
которых происходит
чередование сгущений и
разряжений.

Чтобы услышать звук, необходимы:

источник звука;
упругая среда между ним и ухом
определенный диапазон частот колебаний
источника звука – между 16 Гц и 20000 Гц;
достаточная для восприятия ухом
мощность звуковых волн.

Механические волны, возникающие в упругих средах, в которых частицы среды колеблются с частотами меньшими, чем частоты звукового диапазон

Механические волны, возникающие
в упругих средах, в которых
частицы среды колеблются с
частотами меньшими, чем частоты
звукового диапазона, называются
инфразвуковыми волнами.

Механические волны, возникающие в упругих средах, в которых частицы среды колеблются с частотами, большими, чем частоты звукового диапазон

Механические волны,
возникающие в
упругих средах, в
которых частицы
среды колеблются с
частотами, большими,
чем частоты звукового
диапазона, называются
ультразвуковыми
волнами.

Мы начали изучение колебаний с механических колебаний. Мы убедились далее, что в основе звуковых явлений, т. е. явлений, воспринимаемых ухом, тоже лежат механические колебания, отличающиеся от колебаний маятника лишь более высокими частотами. Затем мы рас...

§ 33. Волновые явления

Мы перейдем теперь к изучению распространения колебаний. Если речь идет о механических колебаниях, т. е. о колебательном движении частиц какой-либо твердой, жидкой или газообразной среды, то распространение колебаний означает передачу колебаний от одних ч...

§ 34. Скорость распространения волн

В том, что распространение механических волн происходит не мгновенно, нас убеждают простейшие наблюдения. Каждый видел, как постепенно и равномерно расширяются круги на воде или как бегут морские волны. Здесь мы непосредственно видим, что распространение...

§ 35. Радиолокация, гидроакустическая локация и звукометрия

Если скорость распространения волн известна, то измерение их запаздывания позволяет решить обратную задачу: найти пройденное ими расстояние. Ничтожные промежутки времени, затрачиваемые электромагнитными волнами на пробег наземных расстояний, теперь уже не...

§ 36. Поперечные волны в шнуре

Мы перейдем теперь к более подробному изучению механических волн. Их свойства зависят от многих обстоятельств: от вида связи между смежными участками среды, от размеров среды (например, в теле ограниченных размеров картина распространения будет иная, чем...

§ 37. Продольные волны в столбе воздуха

Мы познакомимся теперь с другим видом волн, причем опять возьмем тело удлиненной формы, а именно столб воздуха, заключенный в трубе. Вдоль трубы может двигаться поршень. Заставим этот поршень совершать гармоническое колебание. Что будет происходить в стол...

§ 38. Волны на поверхности жидкости

Мы уже упоминали о волнах, образование которых обусловлено не силой упругости, а силой тяжести. Именно поэтому нас не должно удивлять, что волны, распространяющиеся по поверхности жидкости, не являются продольными. Однако они не являются и поперечными: дв...

§ 39. Перенос энергии волнами

Распространение механической волны, представляющее собой последовательную передачу движения от одного участка среды к другому, означает тем самым передачу энергии. Эту энергию доставляет источник волны, когда он приводит в движение непосредственно прилега...

§ 40. Отражение волн

Поставим на пути волн в водяной ванне плоскую пластинку, длина которой велика по сравнению с длиной волны. Мы увидим следующее. Позади пластинки получается область, в которой поверхность воды остается почти в покое (рис. 83). Другими словами, пластинка с...

>> Волновые явления

§ 42 ВОЛНОВЫЕ ЯВЛЕНИЯ

Каждый из нас наблюдал, как от камня, брошенного на спокойную поверхность пруда или озера, кругами разбегаются волны (рис. 6.1). Многие следили за морскими волнами, набегающими на берег. Все читали рассказы о морских путешествиях, о чудовищной силе морских волн, легко раскачивающих большие корабли. Однако при наб.тюдении этих явлений не всем известно, что звук всплеска воды доносится до нашего уха волнами в том воздухе, которым мы дышим, что свет, с помощью которого мы зрительно воспринимаем окружающее, тоже представляет собой волновое движение.

Волновые процессы чрезвычайно широко распространены в природе . Различны физические причины, вызывающие волновые движения. Но, подобно колебаниям, все виды волн описываются количественно одинаковыми или почти одинаковыми законами. Многие трудные для понимания вопросы становятся более ясными, если сравнивать различные волновые явления.

Что же называют волной? Почему возникают волны? Отдельные частицы любого тела -твердого, жидкого или газообразного - взаимодействуют друг с другом. Поэтому если какая-либо частица тела начинает совершать колебательные движения, то в результате взаимодействия между частицами это движение начинает с некоторой скоростью распространяться во все стороны.

Волна - это колебания, распространяющиеся в пространстве с течением времени.

В воздухе, твердых телах и внутри жидкостей механические волны возникают благодаря действию сил упругости. Эти силы осуществляют связь между отдельными частями тела. Образование волн на поверхности воды вызывают сила тяжести и сила поверхностного натяжения.

Наиболее отчетливо главные особенности волнового движения можно увидеть, если рассматривать волны на поверхности воды. Это могут быть, например, волны, которые представляют собой бегущие вперед округлые валы. Расстояния между валами, или гребнями, примерно одинаковы. Однако если на поверхности воды, по которой бежит волна, находится легкий предмет, например лист с дерева, то он не будет увлекаться вперед волной, а начнет соверпгать колебания вверх и вниз, оставаясь почти на одном месте.

При возбуждении волны происходит процесс распространения колебаний, но не перенос вещества. Возникшие в каком-то месте колебания воды, например от брошенного камня, передаются соседним участкам и постепенно распространяются во все стороны, вовлекая в колебательные движения все новые и новые частицы среды. Течение же воды не возникает, перемещаются лишь локальные формы ее поверхности.

Скорость волны. Важнейшей характеристикой волны является скорость ее распространения. Волны любой природы не распространяются в пространстве мгновенно. Их скорость конечна. Можно себе, например, представить, что над морем летит чайка, причем так, что она все время оказывается над одним и тем же гребнем волны. Скорость волны в этом случае равна скорости чайки. Волны на поверхности воды удобны для наблюдения, так как скорость их распространения сравнительно невелика.

Поперечные и продольные волны. Нетрудно также наблюдать волны, распространяющиеся вдоль резинового шнура. Если один конец шнура закрепить и, слегка натянув шнур рукой, привести другой его конец в колебательное движение, то по шнуру побежит волна (рис. 6.2).

Скорость волны будет тем больше, чем сильнее натянут шнур. Волна добежит до точки закрепления шнура, отразится и побежит назад. В этом опыте при распространении волны происходят изменения формы шнура. Каждый участок шнура колеблется относительно своего неизменного положения равновесия.

Обратим внимание на то, что при распространении волны вдоль шнура колебания совершаются в направлении, перпендикулярном направлению распространения волны. Такие волны называются поперечными (рис. 6.3). В поперечной волне смещения отдельных участков среды происходят в направлении, перпендикулярном направлению распространения волны. При этом возникает упругая деформация , называемая деформацией сдвига. Отдельные слои вещества сдвигаются относительно друг друга. При деформации сдвига в твердом теле возникают силы упругости, стремящиеся вернуть тело в исходное состояние. Именно силы упругости и вызывают колебания частиц среды 1 .

Сдвиг слоев относительно друг друга в газах и жидкостях не приводит к появлению сил упругости. Поэтому в газах и жидкостях не могут существовать поперечные волны. Поперечные волны возникают в твердых телах.

Но колебания частиц среды могут происходить и вдоль направления распространения волны (рис. 6.4). Такая волна называется продольной. Продольную волну удобно наблюдать на длинной мягкой пружине большого диаметра. Ударив ладонью по одному из концов пружины (рис. 6.5, а), можно заметить, как сжатие (упругий импульс) бежит по пружине. С помощью серии последовательных ударов можно возбудить в пружине волну, представляющую собой последовательные сжатия и растяжения пружины, бегущие друг за другом (рис. 6.5, б).

Итак, в продольной волне происходит деформация сжатия. Силы упругости, связанные с этой деформацией, возникают как в твердых телах, так и в жидкостях и газах.

1 Когда мы говорим о колебаниях частиц среды, то имеем в виду колебания малых объемов среды, а не колебания молекул.

Эти силы вызывают колебания отдельных участков среды. Поэтому продольные волны могут распространяться во всех упругих средах. В твердых телах скорость продольных волн больше скорости поперечных.

Это учитывается при определении расстояния от очага землетрясения до сейсмической станции. Вначале на станции регистрируется продольная волна, так как ее скорость в земной коре больше, чем поперечной. Спустя некоторое время регистрируется поперечная волна, возбуждаемая при землетрясении одновременно с продольной. Зная скорости продольных и поперечных волн в земной коре и время запаздывания поперечной волны, можно определить расстояние до очага землетрясения.

Энергия волны. При распространении механической волны движение передается от одних частиц среды к другим. С передачей движения связана передача энергии . Основное свойство всех волн независимо от их природы состоит в переносе ими энергии без переноса вепцества. Энергия поступает от источника, возбуждающего колебания начала шнура, струны и т. д., и распространяется вместе с волной. Через любое поперечное сечение, например шнура, передается энергия. Эта энергия слагается из кинетической энергии движения частиц среды и потенциальной энергии их упругой деформации. Постепенное уменьшение амплитуды колебаний частиц при распространении волны связано с превращением части механической энергии во внутреннюю.

Волна - это колебания, распространяющиеся в пространстве с течением времени. Скорость волны конечна. Волна переносит энергию, но не переносит вещество среды.


1. Какие волны называются поперечными, а какие продольными!
2. Может ли в воде распространяться поперечная волна!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Планирование физике, материалы по физике 11 класса скачать , учебники онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Муниципальное бюджетное общеобразовательное учреждение – средняя

Общеобразовательная школа №2 имени А.И.Герцена г. Клинцы Брянской области

Урок на тему

Подготовила и провела:

Учитель физики

Прохоренко Анна

Александровна

г. Клинцы, 2013 год

Содержание:

Урок на тему «Волновое явление. Распространение механических волн. Длина волны. Скорость волны. »

Цель урока: ввести понятия волна, длина и скорость волны, условие распространения волны, виды волн, научить учащихся применять формулы для нахождения длины и скорости волны; изучить причины распространение поперечных и продольных волн;

Методические задачи:

    Образовательные : ознакомление учащихся с происхождением термина «волна, длина волны, скорость волны»; показать учащимся явление распространение волны, а также доказать с помощью опытов распространение двух типов волн: поперечных и продольных.

    Развивающие : содействовать развитию речи, мышления, познавательных и обще трудовых умений; содействовать овладению методами научного исследования: анализа и синтеза.

    Воспитательные :

Тип урока: изучение нового материала.

Методы: словесные, наглядные, практические.

Оборудование: компьютер, презентация.

Демонстрации:

    Поперечные и продольные волны.

    Распространение поперечных и продольных волн.

План занятия:

    Организация начала урока.

    Мотивационный этап. Постановка целей, задач урока.

    Изучение нового материала

    Закрепление новых знаний.

    Подведение итогов урока.

ХОД УРОКА

  1. Организационный этап

  2. Мотивационный этап. Постановка целей, задач урока.

    Что вы наблюдали на данных видеофрагментах? (Волны)

    Какие виды волн вы увидели?

    На основании ваших ответов мы попробуем с Вами поставить цели для сегодняшнего урока, для этого давайте вспомним каков план изучения понятия, в данном случае понятия волна? (Что такое волна, т.е. определение, виды волн, характеристики волн)

На сегодняшнем уроке я Вам помогу понятия волна, длина и скорость волны, условие распространения волны, виды волн, научить учащихся применять формулы для нахождения длины и скорости волны; изучить причины распространение поперечных и продольных волн; с формировать добросовестное отношение к учебному труду, положительной мотивации к учению, коммуникативных умений; способствовать воспитанию гуманности, дисциплинированности, эстетического восприятия мира.

  1. Изучение нового материала

Сейчас Вам необходимо по плану, который представлен на экране и на листочках у Вас на партах и прочитав параграфы 42 и 43 найти необходимую информацию и выписать её.

План:

    Понятие волны

    Условия возникновения волны

    Источник волн

    Что необходимо для возникновения волны

    Виды волн (определения)

Волна – колебания, которые распространяются в пространстве с течением времени. Волны возникают в основном благодаря силам упругости.

Особенности волны:

    Механические волны могут распространяться только в какой- нибудь среде (веществе): в газе, в жидкости, в твердом теле.

    В вакууме механическая волна возникнуть не может.

Источником волн являются колеблющиеся тела, которые создают в окружающем пространстве деформацию среды. (рис)

Для возникновения механической волны необходим:

1. Наличие упругой среды

2 . Наличие источника колебаний – деформации среды

Виды волны:

    Поперечные – в которых колебания происходят перпендикулярно направлению движения волны. Возникают только в твердых телах.

    Продольные - в которых колебания происходят вдоль направления распространения волн. Возникают в любой среде (жидкости, в газах, в твёрдых телах).

Рассматриваем таблицу, обобщающую предыдущие знания. (Смотрим на презентацию)

Делаем вывод: механическая волна:

    процесс распространения колебаний в упругой среде;

    при этом происходит перенос энергии от частицы к частице;

    переноса вещества нет;

    для создания механической волны необходима упругая среда: жидкость, твердое тело или газ.

А теперь рассмотрим и запишем основные характеристики волн.

Какие величины характеризующие волну

Каждая волна распространяется с какой-то скоростью. Под скоростью v волны понимают скорость распространения возмущения. Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Длиной волны λ называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Основные характеристики: λ= v * T , λ- длина волны м, v – скорость распространения м/с, T – период волны с.

4. Закрепление новых знаний.

    Что такое волна?

    Условия возникновения волн?

    Какие типы волн вы знаете?

    Может ли в воде распространяться поперечная волна?

    Что называется длиной волны?

    Что называется скоростью распространения волны?

    Как связать скорость и длину волны?

Рассматриваем 2 вида и определяем где какая волны?

Решите задачи:

    Определите длину волны при частоте 200 Гц, если скорость распространения волн равна 340м/с. (68000 м=68 км)

    По поверхности воды в озере волна распространяется со скоростью 6 м/с. На поверхности воды плавает листок дерева. Определите частоту и период колебаний листка, если длина волны равна 3м.(0,5 м, 2 с -1 )

    Длина волны равна 2 м, а скорость ее распространения 400 м/с. Определите, сколько полных колебаний совершает эта волна за 0,1 с (20)

Рассматриваем это интересно : Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды небольшой мяч, то можно увидеть, что он движется, покачиваясь на волнах, по круговой траектории. Таким образом, волна на поверхности жидкости представляет собой результат сложения продольного и поперечного движения частиц воды.

5.Подведение итогов урока.

Итак, давайте подведём итоги.

Какими словами описали бы вы состояние после урока?:

    Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью;

    Ах, как я устал от этой суеты…..

    Ты понял блаженство занятий, удачи, закон и секрет

    Изучать тему «Механические волны» не так то просто!!!

6 . Информация о домашнем задании.

Подготовить по плану ответы на вопросы с помощью §§42-44

Хорошо знать формулы и определения по теме «Волны»

По выбору: составить кроссворд на тему «Механические волны»

Задачи:

    Рыболов заметил, что за 10 с поплавок совершил на волнах 20 колебаний, а расстояние между соседними горбами волн 1,2 м. Какова скорость распространения волн? (T=n/t; T=10/5=2c; λ=υ*ν; ν=1/Т; λ=υ/T; υ=λ*T*υ=1*2=2(м/с))

    Длина волы 5 м, а её частота 3 Гц. Определите скорость волны.(1,6 м/с)

Самоанализ

Урок проводился в 11 классе по теме « Волновое явление. Распространение механических волн. Длина волны. Скорость волны.» Является тринадцатым уроком в разделе физики «Механические колебания и волны.» Тип урока: изучение нового материала.

На уроке учитывалась триединая дидактическая цель: образовательная, развивающая, воспитательная. Образовательной целью я поставила ознакомление учащихся с происхождением термина «волна, длина волны, скорость волны»; показать учащимся явление распространение волны, а также доказать с помощью опытов существование двух типов волн: поперечных и продольных. Развивающей целью я поставила формирование у учащихся четкие представления об условиях распространение волны; развитие логического и теоретического мышления, воображения, памяти при решении задач и закреплении ЗУНов. Воспитательной целью я поставила : формировать добросовестное отношение к учебному труду, положительной мотивации к учению, коммуникативных умений; способствовать воспитанию гуманности, дисциплинированности, эстетического восприятия мира.

Во время урока мы прошли следующие этапы:

    Организационный этап

    Мотивационный и постановка целей, задач урока. На данном этапе на основе просмотренного видеофрагмента мы определили цели и задачи на урок и провели мотивацию. Используя: словесный метод в виде беседы, наглядный метод в виде просмотра видеофрагмента.

    Изучение нового материала

На данном этапе я предусматривала логическую связь при объяснении нового материала: логичность, доступность, понятность. Основными методами урока были: словесные (беседа), наглядные (демонстрации, компьютерное моделирование). Форма работы: индивидуальная.

    Закрепление нового материала

При закреплении ЗУНов учащихся я использовала интерактивные задания из мультимедийного пособия в разделе «Механические волны», решение задач у доски с объяснением. Основными методами урока были: практические (решение задач), словесные (беседа по вопросам)

    Подведение итогов.

Н а данном этапе использовала словесный метод в виде беседы, ребята отвечали на поставленные вопросы.

Проведена рефлексия. Мы выяснили, были ли достигнуты поставленные в начале уроке цели, что для них было сложно на данном уроке. Двум ученикам были поставлены оценки за задачи и нескольким ученикам оценки за ответы.

    Информация о домашнем задании.

На данном этапе, учащимся было предложено записать домашнее задание в виде ответа на вопрос по плану и пару задач на листке. И по выбору составить кроссворд.

Я считаю, что триединая дидактическая цель на уроке достигнута.