Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Генетические алгоритмы. Генетические алгоритмы: суть, описание, примеры, применение

Генетические алгоритмы. Генетические алгоритмы: суть, описание, примеры, применение

Выдавал благородную пустоту. Однако недостаточный уровень *вырезано цензурой* отодвинул дату публикации, и вот только сейчас после позорного нудливого попрошайничества с моей стороны эта статья получила возможность показать себя миру. За этот промежуток времени успели выйти в свет как минимум три (столько мне на глаза попалось) статьи на подобную тему, и, вполне вероятно, что-то из написанного ниже вы прочитаете не впервые. Таким людям я предлагаю не хмурить носики от очередной попытки неопытного юнца научно-популярно объяснить ГА, а проходить к следующему экспонату ко второй части, где описывается создание на основе ГА бота для программистской игры Robocode. Это, по последним сведениям разведки, еще не встречалось на хабре.

Часть первая. Жизнь и творчество генетического алгоритма.

Начнем издалека. Есть некоторый набор задач, которые требуют решения. Наша цель - найти действия, которые смогут преобразовать Дано (начальные условия задач) в Ответ (целевое состояние).

Если ситуация простая, и решение такой задачи можно явно посчитать из условий при помощи этих ваших матанов, то и славно, тут и без наших премудростей все хорошо, нас наебали, все расходимся. Например, при решении квадратного уравнения ответ (значения x1, x2) получаются из начального условия (коэффициентов a, b, c) путем применения формулы, которую мы все учили в школе. А что делать в более печальном случае, когда нужной формулы в учебнике нету? Можно попробовать с помощью мозгового штурма решить одну из задач. Аналитически. Численными методами. Силой отчаянного перебора функций. Через некоторое время послышатся мечтательное студенческое «хоть бы оно само решилось». Ага, тут-то мы и вылезаем из-за занавесок. Итак, цель - написать программу, которая бы находила функцию (программу), получающую на вход исходные данные и возвращающую годные циферки. Сила метапрограммирования, в бой!

Хм, как же мы будем добиваться такой цели? Принесем у костра жертву богам рекурсии: напишем программу, которая напишет программу, которая бы находила функцию (программу)... Нет, во второй раз такое не прокатит. Лучше мы возьмем пример у природы, кинув наш взор на такие явления, как механизм эволюции, естественный отбор. Всё как в жизни: наши программы будут жить, спариваться, давать потомство и погибать под гнетом более приспособившихся особей, передавая свои лучшие качества потомкам. Звучит безумно, но стоит приглядеться.

Бог нашего мира программ - это наша задача. Программы должны верить в нее, спариваться ради нее, ставить в нее честь свечки в церкви и жить с единственной целью - найти смысл жизни решение этой задачи. Наиболее приспособившийся к среде (приблизившийся к решению задачи) становится альфа-самцом, выживает и дает крепкое потомство. Лузер, который просидел всю жизнь за онлайн играми не познал успеха в решении задачи, имеет совсем маленькие шансы дать потомство. Генофонд будет очищаться от вклада этих прыщавых товарищей, а всё общество программ будет идти к светлому будущему решенной задачи. Что же, в общих чертах уже понятно, теперь нужно разобраться с нюансами: во-первых, как вы себе представление спаривание программ? во-вторых, откуда мы возьмем первое поколение программ? в-третьих, по какому признаку мы будем определять приспособленность особей и как она будет влиять на скрещивание? в-четвертых, стоит определиться с условиями окончания работы алгоритма, когда всю эту оргию останавливать.

Искусство спаривания программ

Думаю, многие из нас иногда испытывают жгучее желание применить к программам насильственное действие сексуального характера. Тут мы вынуждены заранее предупредить, что у нас такие межвидовые девиации не поощряются. У нас всё как завещала католическая церковь: программа с программой, только после брака… и партнеров не меняют, даже если тот томный парень купил тебе коктейль в баре. Хотя нет, вру, многоженство гаремного типа процветает. Да, и еще, несмотря на применение ниже таких слов как «отец» или «сын», программы у нас гермафродиты. Ну и инцест тоже… Тьфу, и я еще о церкви говорил *facepalm*. Ладно, об этом позже.

Вопрос скрещивания программ не так уж прост. Случайный обмен функциями, строками или переменными приведет к жирному потоку страшных слов в ваш адрес от компилятора/интерпретатора, а никак не новую программу. То есть необходимо найти способ скрестить программы корректно . Умные дяди нашли выход. А умные мальчики и девочки, изучавшие строения компиляторов, тоже уже догадались. Да-да, это синтаксическое дерево .

Сразу же умерю пыл: у нас борода еще не очень густая, поэтому будем использовать самые простые типы программ. Желающие могут отправиться в долину несметного богатства программирования, а нас тут всё просто - программа состоит из выражений, в свою очередь состоящих из простых функций с некоторой арностью, переменных и констант. Каждое выражение считает по одному из возвращаемых программой значений.

Например: некоторая особь-программа square из двух выражений, пытающаяся (не особо удачно) решить квадратное уравнение:
function square(a, b, c){ x1 = min(sin(b)*(a+1), 0); x2 = 3 + exp(log(b*a)); return {x1, x2}; }
С представлением определились, теперь надо разобраться с хранением. Так как вокруг этих самых программ еще предстоит множество плясок, в том числе передача их из одной часть системы в другую (которые, вообще говоря, в моем случае вообще были написаны на разных языках), то хранение нашей особи в виде дерева не очень-то удобное. Для представления более удобным способом (идеально - набор строк над некоторым конечным алфавитом) нашу особь-программу-набор_деревьев придется научиться кодировать/раскодировать.

Вроде как дерево, а вроде и нет
Итак, надо представить дерево в виде строки. Тут нас выручит сила karva-деревьев. Для начала стоит определиться с набором функций, переменных и констант, которые могут попасться в дереве. Переменные и константы соответствуют листьям дерева и будут называться терминалами, функции - остальным (внутренним) узлам дерева, именуются нетерминалами. Так же стоит обратить внимание на то, что функции могут иметь разное количество аргументов, посему такие знания («арность», - тихо пробежало слово по губам знатоков) нам очень даже понадобятся. В итоге получается таблица кодировки, например, такая:

Здесь n, +, *, if - функции; 2 - константа; a и b - переменные. В реальных задачах таблица поувесистей, с таким набором и квадратное уравнение не решить. Также надо иметь ввиду тот факт, что во избежании деления на нуль и других сценариев апокалипсиса все функции должны быть определены на всём множестве вещественных чисел (ну, или какое вы там множество используете в задаче). А то придется сидеть на карауле, отлавливать логарифмы от нуля и потом разбираться, что с этим делать. Мы люди не гордые, мы пойдем легким путем, исключая подобные варианты.

Так вот, с помощью такой таблицы гонять функции из дерева в строку и обратно не проблема. Например, пришла нам такая строка на расшифровку:

По таблице идентифицируем каждый элемент, вспоминаем также и про арность:

Теперь при помощи арности расставляем ссылки на аргументы функций:

Прошу обратить внимание на то, что последние 3 элемента списка оказались никому не нужны, и их значения никак не влияют на результат функции. Это получилось из-за того, что количество задействованных элементов списка, количество узлов дерева постоянно плавает в зависимости от их арностей. Так что лучше набрать про запас, чем потом мучиться с некорректным деревом.

Теперь если его потянуть вверх за первый элемент, то у нас в руке будет болтаться дерево выражения:

Значение функции можно вычислить рекурсивным обходом по дереву, она у нас оказывается такой:

У меня глаза от папы такие
Возвращаемся к самому горячему - к скрещиванию. Операции скрещивания программ мы ставим следующие условия: во-первых, две скрещивающиеся особи дают два потомка (т.е. размер популяции постоянный); во-вторых, в результате скрещивания потомки должны в определенной мере обладать характеристиками обеих родителей (т.е. яблоко не должно укатываться уж очень далеко от яблони). Мы теперь узнали, как программа будет представляться - это набор строк или деревьев. Соответственно, и скрещивать их можно как строки или как деревья.

Скрещивание деревьев представляет собой обмен случайно выбранными ветками. Скрещивание строк можно реализовать несколькими способами: одноточечная рекомбинация (кусочное склеивание), двуточечная рекомбинация, поэлементный обмен и др. Их можно описать длинными сложноподчиненными предложениями с деепричастными оборотами, но и одного взгляда на схемку достаточно, чтобы смекнуть, что к чему:

Стоит только заметить, что места склейки в рекомбинации выбираются случайно, так же как и в поэлементном скрещивании обмен совершается с некоторой вероятностью. Скрещивание деревьями в плане наследственности выглядит перспективней, но реализуется сложнее.

Эй, эта девушка со мной!

С самой интимной частью процесса разобрались (многие уже почувствовали через эту статью, насколько скудна личная жизнь автора). Теперь от взаимоотношения между парой особей перейдем к социальным основам.

Особи делятся на поколения. Новое поколение состоит из детей особей предыдущего поколения. Получается, есть текущее поколение сыновей и дочерей, поколение отцов и матерей, бабушек и дедушек, прабабушек и так далее до нулевого поколения - прародителей всего гордого народа. Каждая особь нового поколения после рождения пытается решить задачу, ее действия оценивает некоторая божественная функция пригодности, и в зависимости от ее оценок деятельности юнца особь получает некоторые шансы на воспроизведение потомства, то есть попадания в класс лучших представителей поколения, выбранных для продолжения рода. Наш мир суров и жесток, и по всем канонам антиутопий (или согласно идеям фюрера, как хотите) ни к чему не пригодные родители-пенсионеры после выполнения своей миссии рождения потомства отправляются в путешествие на газенвагене, освобождая жилплощадь паре своих чад. Дети идут по стопам родителей, и так из поколения в поколение.

Та самая функция приспособленности (или фитнесс-функция), которая выдает квоты на спаривание, должна адекватно оценивать способность особи решать задачу, и выдавать числовое выражение этой приспособленности (чем больше значение - тем лучше приспособленность). Например, в случае того самого квадратного уравнения это может быть мера того, насколько значение левой стороны уравнения близко к нулю при подставленных значениях x1, x2, вычисленных программой-особью.

Функция приспособленности выдает каждой особи поколения некоторое число, показывающее ее полезность, приспособленность. Это значение будет влиять на процедуру отбора (селекции): чем больше у особи это значение, тем больше у нее вероятность найти пару для скрещивания (и даже не одну). На практике, после вычисления приспособленности для всех особей поколения мы нормируем эти значения (чтобы сумма приспособленностей особей равнялась 1) и для каждого из мест для поцелуев бросается жребий (случайное число от 0 до 1), определяющий счастливчика. Альфа-самец может получить себе несколько мест, неудачник ничего не получит и так и останется в одиночестве с потертым календариком 1994 года с Памеллой. Такой способ селекции называется «отбором методом рулетки», и схематично это выглядит как-то так:

Существуют и другие способы селекции, но все они придерживаются общего правила: чем больше у особи приспособленность, тем больше она должна участвовать в скрещивании. Также в процесс можно включить опцию элитизма, когда лучший представитель поколения получает за заслуги перед Отечеством премию в виде дополнительных лет жизни: он переходит в следующее поколение без изменений, хотя и может параллельно наделать детей. Это позволяет нам не потерять очень удачное решение, которое может разрушиться в процессе скрещивания.

Тут же упомянем и мутацию. Это операция случайным образом с некоторой маленькой вероятностью меняет фрагмент особи, что позволяет разнообразить генофонд. Полезная вещь, вдруг такая мутация лактозу расщепить поможет! А если нет, и еще одна рука лишняя - то уж помучайся с ней до конца дней своих, потомство дать все равно шансов маловато.

Сотворения мира и Апокалипсис

Как переходить от поколения к поколению выяснили, теперь вопрос следующий - «а что стало первопричиной, с чего все началось?». В отличие от этого вашего мира, у нас для объяснения таких вещей не надо придумывать уловки типа «большого взрыва» или «7 дней». Тут ответ предельно ясен - всё началось с нулевого поколения, которое было сотворено случайным образом. Да-да, просто генерируем рандомом строки/деревья. Единственное требование - корректность особи, а насколько она ущербна - никого не волнует, отбор сделает свое дело.

Существует же наш мир настолько долго, насколько нам надо. Мы или задаем планку удовлетворяющей нас приспособленности, и при появлении достаточно крутой особи останавливаем процесс, или проверяем, насколько особи поколения сильно различаются друг от друга. Логично, что если всё поколение состоит из однояйцевых близняшек, то дальнейшее спаривание возбуждает не даст ничего нового генофонду, а на одну мутацию надеяться наивно. Также можно установить ограничение по времени.

Эй, ты! Харошш парить мозг! Что в итоге-то?

Сделаем паузу в этом увлекательном словоблудии и оглянемся назад (ну т.е. наверх). Если подводить итоги, то генетический алгоритм выглядит так:

Мы учимся представлять решение задачи в виде особи генетического алгоритма - списка фиксированной длины над некоторым алфавитом. После этого подбираем функцию приспособленности, которая могла бы оценивать особей, и генерируем случайным образом нулевое поколение. Тут начинается круговорот свободной любви: вычисляется приспособленность особей поколения, по этим данным формируются пары (лузеры выкидываются, а альфа-самцы не ограничиваются одной парой), оставшиеся спариваются, рожают пару детишек (к которым еще и мутация приложилась) и накладывают на себя руки. Так продолжается до тех пор, пока не найдется избранный, или изменения перестают нас радовать, или нам все это дело надоело. Ну и как же я обойдусь без схемки:

Часть вторая. Роль генетического алгоритма в образе бота Robocode.

Что-то первая часть затянулась, мы все утомились, поэтому не будем повторяться. Также опустим некоторые особенности реализации.
Узнать что такое Robocode можно тут: habrahabr.ru/blogs/programmers_games/59784 (картинки утеряны правда). Если коротко - эта программистская игра, изначально созданная для изучения особенностей языка Java, которая позволяет участникам создавать своих ботов-роботов и устраивать между ними бои. Каждый участник пишет код на Java, который управляет небольшим танком, и сражается с другими такими же танками.

Перед нами стоит следующая задача: разработка при помощи генетического алгоритма автоматизированную системы управления ботом-танком. Робот должен создаваться и модифицироваться автоматически, т.е. в ходе своей эволюции «подстраиваться» под конкретного и заранее выбранного соперника в боях 1 на 1.

Как представить решение задачи в виде особи

Сначала определим возможности танка. Список основных действий, которые может совершить робот во время боя, ограничивается четырьмя пунктами: повернуть пушку, повернуть корпус, выстрелить, передвинуться. Пятое действие, поворот радара, мы исключили из рассмотрения, реализовав его тривиально - постоянное вращение (таким образом, танк будет всегда обладать актуальной информацией о положении врага).

Очевидно, что для успешного ведения боя эти действия должны совершаться не хаотично, а зависеть от обстановки (состояния) на поле битвы: от положения танков, их скоростей, энергии и остальных параметров. Таким образом, процесс управления танком сводится к совершению вышеописанных действий на основе состояния боя. Закон, который определяет поведение танка (его действия) на основе обстановки на поле боя, мы будем именовать функцией управления, и именно она будет особью нашего генетического алгоритма.

Так как функция управления должна возвращать 4 значения (энергия выстрела, угол поворота башни, угол поворота корпуса, перемещение танка), то, как объяснялось в прошлой части, она будет состоять из четырех выражений, т.е. из четырех строк/деревьев.

Для составления таблицы кодирования необходимо определиться с набором базовых функций, переменных и констант.

Функции:
+(x, y) = x + y
++(x, y, z) = x + y + z
n(x) = -x
*(x, y) = x * y
**(x, y) = x * y * z
min(x, y) = x > y? y: x
s(x) = 1/(1+exp(-x))
if(x, y, z, w) = x > y? z: w

Переменные:
x, y - координаты танка соперника относительно нашего танка;
dr - расстояние, которое осталось «доехать» нашему танку;
tr - угол, на который осталось повернуться нашему танку;
w - расстояние от нашего танка до края поля;
dh - угол между направлением на танк соперника и пушкой нашего танка;
GH - угол поворота пушки нашего танка;
h - направление движения танка соперника;
d - расстояние между нашим танком и танком соперника;
e - энергия танка соперника;
E - энергия нашего танка.

Ну и константы: 0.5, 0, 1, 2, 10

Функция приспособленности

Опишем, как была выбрана функция приспособленности. Результаты боя «Robocode» формирует на основе множества нюансов. Это не только количество побед, но и всевозможные очки за активность, за выживаемость, за попадание в соперника и т.д. В итоге «Robocode» ранжирует роботов по параметру «total scores», который учитывает все вышеописанные тонкости. Его мы и будем использовать при подсчете приспособленности особи: итоговая приспособленность будет равняться доле в процентах очков нашего танка от суммы очков обеих танков, и принимает значение от 0 до 100. Соответственно, если значение приспособленности больше 50, то наш робот набрал больше очков, чем соперник, следовательно, сильнее его. Заметим, что согласно такой системе подсчета, первое место далеко не всегда занимает тот, кто победил в большинстве раундов боя. Ну тут мы разводим руками с фразой про мотороллер: создатели определили критерии, мы им следуем.

Вообще говоря, вычисление приспособленности особи включает в себя проведение серии боев! Т.е. такой, казалось бы, незначительный пункт, как просчет приспособленности, состоит из таких плясок с бубном:
1) Наша система сохраняет закодированные хромосомы особи в файл chromosome.dat;
2) Для каждой особи запускается среда «Robocode», которая организовывает поединок. На вход ей мы подаем файл формата.battle, описывающий условия боя - список сражающихся танков, размеры поля, количество раундов и прочее;
3) Для битвы Robocode загружает танки, наш робот-оболочка считывает файл chromosome.dat с закодированным поведением, интерпретирует его в набор действий и ведет согласно им бой;
4) Среда Robocode по окончании поединка записывает результат битвы в файл results.txt и на этом завершает свою работу;
5) Наша система подбирает этот файл, парсит и выделяет из него значения total score нашего танка и соперника. Путем нехитрой арифметики получаем значение приспособленности.

Как наши их, да?

Подведем итоги нашего конструкторского бюро. Наша система состоит из двух частей (программ). Первая из них на основе генетического алгоритма собирает особь и сохраняет ее в виде набора строк, а вторая (код робота) интерпретирует ее (перерабатывая в дерево выражения) и осуществляет управление танком (вычисляя рекурсивным обходом значение деревьев выражений при заданных переменных, то есть текущем состоянии боя). Первая программа написана на языке СИ, вторая - на языке Java.

При реализации генетического алгоритма число особей в популяции было выбрано равным 51 (25 пар + одна элитная особь). Один шаг эволюции (смена популяции) занимает около дюжины минут, следовательно, в сумме дело затягивается на несколько часов.

В качестве результата продемонстрируем итоги создания соперника роботам Walls и Crazy:




В первом случае мы остановили процесс после достижения одной из особей приспособленности рубежа 70, во втором нам было достаточно, что средняя приспособленности особей поколения превышает 50.

После созерцания промыть глаза спиртом

Если кто не боится плакать кровавыми слезами в конвульсиях от созерцания быдлокодинга (особенно волосы начнут шевелиться от кода робота - у нас с java взаимная ненависть), то прикрепляю

В последнее время все больше «ходят» разговоры про новомодные алгоритмы, такие как нейронные сети и генетический алгоритм. Сегодня я расскажу про генетические алгоритмы, но давайте на этот раз постараемся обойтись без заумных определений и сложных терминах.
Как сказал один из великих ученных: «Если вы не можете объяснить свою теорию своей жене, ваша теория ничего не стоит!» Так давайте попытаемся во всем разобраться по порядку.

Щепотка истории

Как говорит Википедия: «Отец-основатель генетических алгоритмов Джон Холланд, который придумал использовать генетику в своих целях аж в 1975 году». Для справки в этом же году появился Альтаир 8800, и нет, это не террорист, а первый персональный компьютер. К тому времени Джону было уже целых 46 лет.

Где это используют

Поскольку алгоритм самообучающийся, то спектр применения крайне широк:
  • Задачи на графы
  • Задачи компоновки
  • Составление расписаний
  • Создание «Искусственного интеллекта»

Принцип действия

Генетический алгоритм - это в первую очередь эволюционный алгоритм, другими словами, основная фишка алгоритма - скрещивание (комбинирование). Как несложно догадаться идея алгоритма наглым образом взята у природы, благо она не подаст на это в суд. Так вот, путем перебора и самое главное отбора получается правильная «комбинация».
Алгоритм делится на три этапа:
  • Скрещивание
  • Селекция (отбор)
  • Формирования нового поколения
Если результат нас не устраивает, эти шаги повторяются до тех пор, пока результат нас не начнет удовлетворять или произойдет одно из ниже перечисленных условий:
  • Количество поколений (циклов) достигнет заранее выбранного максимума
  • Исчерпано время на мутацию
Более подробно о шагах
Создание новой популяции . На этом шаге создается начальная популяция, которая, вполне возможно, окажется не кошерной, однако велика вероятность, что алгоритм эту проблему исправит. Главное, чтобы они соответствовали «формату» и были «приспособлены к размножению».
Размножение . Ну тут все как у людей, для получения потомка требуется два родителя. Главное, чтобы потомок (ребенок) мог унаследовать у родителей их черты. При это размножаются все, а не только выжившие (эта фраза особенно абсурдна, но так как у нас все в сферическом вакууме, то можно все), в противном случае выделится один альфа самец, гены которого перекроют всех остальных, а нам это принципиально не приемлемо.
Мутации . Мутации схожи с размножением, из мутантов выбирают некое количество особей и изменяют их в соответствии с заранее определенными операциями.
Отбор . Тут начинается самое сладкое, мы начинаем выбирать из популяции долю тех, кто «пойдет дальше». При этом долю «выживших» после нашего отбора мы определяем заранее руками, указывая в виде параметра. Как ни печально, остальные особи должны погибнуть.

Практика

Вы успешно прослушали «сказку» про чудо-алгоритм и вполне возможно заждались, когда мы его начнем эксплуатировать наконец, хочу вас обрадовать, время настало.
Давайте рассмотрим на примере моих любимых Диофантовых уравнений (Уравнения с целочисленными корнями).
Наше уравнение: a+2b+3c+4d=30
Вы наверно уже подозреваете, что корни данного уравнения лежат на отрезке , поэтому мы берем 5
случайных значений a,b,c,d. (Ограничение в 30 взято специально для упрощения задачи)
И так, у нас есть первое поколение:
  1. (1,28,15,3)
  2. (14,9,2,4)
  3. (13,5,7,3)
  4. (23,8,16,19)
  5. (9,13,5,2)
Для того чтобы вычислить коэффициенты выживаемости, подставим каждое решение в выражение. Расстояние от полученного значения до 30 и будет нужным значением.
  1. |114-30|=84
  2. |54-30|=24
  3. |56-30|=26
  4. |163-30|=133
  5. |58-30|=28
Меньшие значения ближе к 30, соответственно они более желанны. Получается, что большие значения будут иметь меньший коэффициент выживаемости. Для создания системы вычислим вероятность выбора каждой (хромосомы). Но решение заключается в том, чтобы взять сумму обратных значений коэффициентов, и исходя из этого вычислять проценты. (P.S. 0.135266 - сумма обратных коэффициентов )
  1. (1/84)/0.135266 = 8.80%
  2. (1/24)/0.135266 = 30.8%
  3. (1/26)/0.135266 = 28.4%
  4. (1/133)/0.135266 = 5.56%
  5. (1/28)/0.135266 = 26.4%
Далее будем выбирать пять пар родителей, у которых будет ровно по одному ребенку. Давать волю случаю мы будем давать ровно пять раз, каждый раз шанс стать родителем будет одинаковым и будет равен шансу на выживание.
3-1, 5-2, 3-5, 2-5, 5-3
Как было сказано ранее, потомок содержит информацию о генах отца и матери. Это можно обеспечить различными способами, но в данном случае будет использоваться «кроссовер». (| = разделительная линия)
  • Х.-отец: a1 | b1,c1,d1 Х.-мать: a2 | b2,c2,d2 Х.-потомок: a1,b2,c2,d2 or a2,b1,c1,d1
  • Х.-отец: a1,b1 | c1,d1 Х.-мать: a2,b2 | c2,d2 Х.-потомок: a1,b1,c2,d2 or a2,b2,c1,d1
  • Х.-отец: a1,b1,c1 | d1 Х.-мать: a2,b2,c2 | d2 Х.-потомок: a1,b1,c1,d2 or a2,b2,c2,d1
Есть очень много путей передачи информации потомку, а кросс-овер - только один из множества. Расположение разделителя может быть абсолютно произвольным, как и то, отец или мать будут слева от черты.
А теперь сделаем тоже самое с потомками:
  • Х.-отец: (13 | 5,7,3) Х.-мать: (1 | 28,15,3) Х.-потомок: (13,28,15,3)
  • Х.-отец: (9,13 | 5,2) Х.-мать: (14,9 | 2,4) Х.-потомок: (9,13,2,4)
  • Х.-отец: (13,5,7 | 3) Х.-мать: (9,13,5 | 2) Х.-потомок: (13,5,7,2)
  • Х.-отец: (14 | 9,2,4) Х.-мать: (9 | 13,5,2) Х.-потомок: (14,13,5,2)
  • Х.-отец: (13,5 | 7, 3) Х.-мать: (9,13 | 5, 2) Х.-потомок: (13,5,5,2)
Теперь вычислим коэффициенты выживаемости потомков.
  • (13,28,15,3) - |126-30|=96(9,13,2,4) - |57-30|=27
    (13,5,7,2) - |57-30|=22
    (14,13,5,2) - |63-30|=33
    (13,5,5,2) - |46-30|=16

    Печально так как средняя приспособленность (fitness) потомков оказалась 38.8, а у родителей этот коэффициент равнялся 59.4. Именно в этот момент целесообразнее использовать мутацию, для этого заменим один или более значений на случайное число от 1 до 30.
    Алгоритм будет работать до тех, пор, пока коэффициент выживаемости не будет равен нулю. Т.е. будет решением уравнения.
    Системы с большей популяцией (например, 50 вместо 5-и сходятся к желаемому уровню (0) более быстро и стабильно.

    Код

    На этом простота заканчивается и начинается чудесный C++...
    Класс на C++ требует 5 значений при инициализации: 4 коэффициента и результат. Для вышепривиденного примера это будет выглядеть так: CDiophantine dp(1,2,3,4,30);

    Затем, чтобы решить уравнение, вызовите функцию Solve(), которая возвратит аллель, содержащую решение. Вызовите GetGene(), чтобы получить ген с правильными значениями a, b, c, d. Стандартная процедура main.cpp, использующая этот класс, может быть такой:

    #include "" #include "diophantine.h" void main() { CDiophantine dp(1,2,3,4,30); int ans; ans = dp.Solve(); if (ans == -1) { cout << "No solution found." << endl; } else { gene gn = dp.GetGene(ans); cout << "The solution set to a+2b+3c+4d=30 is:\n"; cout << "a = " << gn.alleles << "." << endl; cout << "b = " << gn.alleles << "." << endl; cout << "c = " << gn.alleles << "." << endl; cout << "d = " << gn.alleles << "." << endl; } }

    Сам класс CDiophantine:

    #include #include #define MAXPOP 25 struct gene { int alleles; int fitness; float likelihood; // Test for equality. operator==(gene gn) { for (int i=0;i<4;i++) { if (gn.alleles[i] != alleles[i]) return false; } return true; } }; class CDiophantine { public: CDiophantine(int, int, int, int, int);// Constructor with coefficients for a,b,c,d. int Solve();// Solve the equation. // Returns a given gene. gene GetGene(int i) { return population[i];} protected: int ca,cb,cc,cd;// The coefficients. int result; gene population;// Population. int Fitness(gene &);// Fitness function. void GenerateLikelihoods(); // Generate likelihoods. float MultInv();// Creates the multiplicative inverse. int CreateFitnesses(); void CreateNewPopulation(); int GetIndex(float val); gene Breed(int p1, int p2); }; CDiophantine::CDiophantine(int a, int b, int c, int d, int res) : ca(a), cb(b), cc(c), cd(d), result(res) {} int CDiophantine::Solve() { int fitness = -1; // Generate initial population. srand((unsigned)time(NULL)); for(int i=0;i 25) break; } temppop[i] = Breed(parent1, parent2);// Create a child. } for(i=0;i

    Статья основана на материалах Википедии и сайта

Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.

Энциклопедичный YouTube

    1 / 5

    ✪ Генетический алгоритм

    ✪ 20: Введение в генетические алгоритмы (1 из 2)

    ✪ C# - Морской Бой - Самый лучший алгоритм ИИ

    ✪ 15 09 2018 Лекция «Генетические алгоритмы для поиска оптимальных структур» Ульянцев В. И.

    ✪ Генетический алгоритм. Размещение графа на линейке

    Субтитры

История

Первые работы по симуляции эволюции были проведены в 1954 году Нильсом Баричелли на компьютере, установленном в Принстонского университета. Его работа, опубликованная в том же году, привлекла широкое внимание общественности. С 1957 года, австралийский генетик Алекс Фразер опубликовал серию работ по симуляции искусственного отбора среди организмов с множественным контролем измеримых характеристик. Положенное начало позволило компьютерной симуляции эволюционных процессов и методам, описанным в книгах Фразера и Барнелла(1970) и Кросби (1973) , с 1960-х годов стать более распространенным видом деятельности среди биологов. Симуляции Фразера включали все важнейшие элементы современных генетических алгоритмов. Вдобавок к этому, Ганс-Иоахим Бремерманн в 1960-х опубликовал серию работ, которые также принимали подход использования популяции решений, подвергаемой рекомбинации, мутации и отбору, в проблемах оптимизации. Исследования Бремерманна также включали элементы современных генетических алгоритмов. Среди прочих пионеров следует отметить Ричарда Фридберга, Джорджа Фридмана и Майкла Конрада. Множество ранних работ были переизданы Давидом Б. Фогелем (1998).

Хотя Баричелли в своей работе 1963 года симулировал способности машины играть в простую игру, искусственная эволюция стала общепризнанным методом оптимизации после работы Инго Рехенберга и Ханса-Пауля Швефеля в 1960-х и начале 1970-х годов двадцатого века - группа Рехенсберга смогла решить сложные инженерные проблемы согласно стратегиям эволюции . Другим подходом была техника эволюционного программирования Лоренса Дж. Фогеля, которая была предложена для создания искусственного интеллекта. Эволюционное программирование первоначально использовавшее конечные автоматы для предсказывания обстоятельств, и использовавшее разнообразие и отбор для оптимизации логики предсказания. Генетические алгоритмы стали особенно популярны благодаря работе Джона Холланда в начале 70-х годов и его книге «Адаптация в естественных и искусственных системах» (1975) . Его исследование основывалось на экспериментах с клеточными автоматами , проводившимися Холландом и на его трудах написанных в университете Мичигана . Холланд ввел формализованный подход для предсказывания качества следующего поколения, известный как Теорема схем . Исследования в области генетических алгоритмов оставались в основном теоретическими до середины 80-х годов, когда была, наконец, проведена Первая международная конференция по генетическим алгоритмам в Питтсбурге, Пенсильвания (США) .

С ростом исследовательского интереса существенно выросла и вычислительная мощь настольных компьютеров, это позволило использовать новую вычислительную технику на практике. В конце 80-х, компания General Electric начала продажу первого в мире продукта, работавшего с использованием генетического алгоритма. Им стал набор промышленных вычислительных средств. В 1989, другая компания Axcelis, Inc. выпустила Evolver - первый в мире коммерческий продукт на генетическом алгоритме для настольных компьютеров. Журналист The New York Times в технологической сфере Джон Маркофф писал об Evolver в 1990 году.

Описание алгоритма

Задача формализуется таким образом, чтобы её решение могло быть закодировано в виде вектора («генотипа ») генов, где каждый ген может быть битом , числом или неким другим объектом. В классических реализациях генетического алгоритма (ГА) предполагается, что генотип имеет фиксированную длину. Однако существуют вариации ГА, свободные от этого ограничения.

Некоторым, обычно случайным, образом создаётся множество генотипов начальной популяции. Они оцениваются с использованием «функции приспособленности », в результате чего с каждым генотипом ассоциируется определённое значение («приспособленность»), которое определяет насколько хорошо фенотип , им описываемый, решает поставленную задачу.

Применение генетических алгоритмов

Генетические алгоритмы применяются для решения следующих задач:

  1. Оптимизация функций
  2. Разнообразные задачи на графах (задача коммивояжера , раскраска, нахождение паросочетаний)
  3. Настройка и обучение искусственной нейронной сети
  4. Задачи компоновки
  5. Игровые стратегии
  6. Биоинформатика (фолдинг белков)
  7. Синтез конечных автоматов
  8. Настройка ПИД регуляторов

Пример простой реализации на C++

Поиск в одномерном пространстве, без скрещивания.

#include #include #include #include #include int main () { srand ((unsigned int ) time (NULL )); const size_t N = 1000 ; int a [ N ] = { 0 }; for ( ; ; ) { //мутация в случайную сторону каждого элемента: for (size_t i = 0 ; i < N ; ++ i ) a [ i ] += ((rand () % 2 == 1 ) ? 1 : - 1 ); //теперь выбираем лучших, отсортировав по возрастанию std :: sort (a , a + N ); //и тогда лучшие окажутся во второй половине массива. //скопируем лучших в первую половину, куда они оставили потомство, а первые умерли: std :: copy (a + N / 2 , a + N , a ); //теперь посмотрим на среднее состояние популяции. Как видим, оно всё лучше и лучше. std :: cout << std :: accumulate (a , a + N , 0 ) / N << std :: endl ; } }

Пример простой реализации на Delphi

Поиск в одномерном пространстве с вероятностью выживания, без скрещивания. (проверено на Delphi XE)

program Program1 ; {$APPTYPE CONSOLE} {$R *.res} uses System . Generics . Defaults , System . Generics . Collections , System . SysUtils ; const N = 1000 ; Nh = N div 2 ; MaxPopulation = High (Integer ) ; var A : array [ 1 .. N ] of Integer ; I , R , C , Points , BirthRate : Integer ; Iptr : ^ Integer ; begin Randomize ; // Частичная популяция for I := 1 to N do A [ I ] := Random (2 ) ; repeat // Мутация for I := 1 to N do A [ I ] := A [ I ] + (- Random (2 ) or 1 ) ; // Отбор, лучшие в конце TArray . Sort < Integer > (A , TComparer < Integer >. Default ) ; // Предустановка Iptr := Addr (A [ Nh + 1 ]) ; Points := 0 ; BirthRate := 0 ; // Результаты скрещивания for I := 1 to Nh do begin Inc (Points , Iptr ^ ) ; // Случайный успех скрещивания R := Random (2 ) ; Inc (BirthRate , R ) ; A [ I ] := Iptr ^ * R ; Iptr ^ := 0 ; Inc (Iptr , 1 ) ; end ; // Промежуточный итог Inc (C ) ; until (Points / N >= 1 ) or (C >= MaxPopulation ) ; Writeln (Format ("Population %d (rate:%f) score:%f" , [ C , BirthRate / Nh , Points / N ])) ; end .

В культуре

  • В фильме 1995 года «Виртуозность » мозг главного злодея выращен генетическим алгоритмом с использованием воспоминаний и поведенческих черт преступников.
1. Естественный отбор в природе

Эволюционная теория утверждает, что каждый биологический вид целенаправленно развивается и изменяется для того, чтобы наилучшим образом приспособиться к окружающей среде. В процессе эволюции многие виды насекомых и рыб приобрели защитную окраску, еж стал неуязвимым благодаря иглам, человек стал обладателем сложнейшей нервной системы. Можно сказать, что эволюция - это процесс оптимизации всех живых организмов. Рассмотрим, какими же средствами природа решает эту задачу оптимизации.

Основной механизм эволюции - это естественный отбор.

Его суть состоит в том, что более приспособленные особи имеют больше возможностей для выживания и размножения и, следовательно, приносят больше потомства, чем плохо приспособленные особи. При этом благодаря передаче генетической информации (генетическому наследованию ) потомки наследуют от родителей основные их качества. Таким образом, потомки сильных индивидуумов также будут относительно хорошо приспособленными, а их доля в общей массе особей будет возрастать. После смены нескольких десятков или сотен поколений средняя приспособленность особей данного вида заметно возрастает.

Чтобы сделать понятными принципы работы генетических алгоритмов, поясним также, как устроены механизмы генетического наследования в природе. В каждой клетке любого животного содержится вся генетическая информация этой особи. Эта информация записана в виде набора очень длинных молекул ДНК (ДезоксирибоНуклеиновая Кислота). Каждая молекула ДНК - это цепочка, состоящая из молекул нуклеотидов четырех типов, обозначаемых А, T, C и G. Собственно, информацию несет порядок следования нуклеотидов в ДНК. Таким образом, генетический код индивидуума - это просто очень длинная строка символов, где используются всего 4 буквы. В животной клетке каждая молекула ДНК окружена оболочкой - такое образование называется хромосомой.

Каждое врожденное качество особи (цвет глаз, наследственные болезни, тип волос и т.д.) кодируется определенной частью хромосомы, которая называется геном этого свойства. Например, ген цвета глаз содержит информацию, кодирующую определенный цвет глаз. Различные значения гена называются его аллелями .

При размножении животных происходит слияние двух родительских половых клеток и их ДНК взаимодействуют, образуя ДНК потомка. Основной способ взаимодействия - кроссовер (cross-over, скрещивание). При кроссовере ДНК предков делятся на две части, а затем обмениваются своими половинками.

При наследовании возможны мутации из-за радиоактивности или других влияний, в результате которых могут измениться некоторые гены в половых клетках одного из родителей. Измененные гены передаются потомку и придают ему новые свойства. Если эти новые свойства полезны, они, скорее всего, сохранятся в данном виде - при этом произойдет скачкообразное повышение приспособленности вида.

2. Что такое генетический алгоритм

Пусть дана некоторая сложная функция (целевая функция ), зависящая от нескольких переменных, и требуется найти такие значения переменных, при которых значение функции максимально. Задачи такого рода называются задачами оптимизации и встречаются на практике очень часто.

Один из наиболее наглядных примеров - задача распределения инвестиций, описанная ранее. В этой задаче переменными являются объемы инвестиций в каждый проект (10 переменных), а функцией, которую нужно максимизировать - суммарный доход инвестора. Также даны значения минимального и максимального объема вложения в каждый из проектов, которые задают область изменения каждой из переменных.

Попытаемся решить эту задачу, применяя известные нам природные способы оптимизации. Будем рассматривать каждый вариант инвестирования (набор значений переменных) как индивидуума, а доходность этого варианта - как приспособленность этого индивидуума. Тогда в процессе эволюции (если мы сумеем его организовать) приспособленность индивидуумов будет возрастать, а значит, будут появляться все более и более доходные варианты инвестирования. Остановив эволюцию в некоторый момент и выбрав самого лучшего индивидуума, мы получим достаточно хорошее решение задачи.

Генетический алгоритм - это простая модель эволюции в природе, реализованная в виде компьютерной программы. В нем используются как аналог механизма генетического наследования, так и аналог естественного отбора. При этом сохраняется биологическая терминология в упрощенном виде.

Вот как моделируется генетическое наследование

Чтобы смоделировать эволюционный процесс, сгенерируем вначале случайную популяцию - несколько индивидуумов со случайным набором хромосом (числовых векторов). Генетический алгоритм имитирует эволюцию этой популяции как циклический процесс скрещивания индивидуумов и смены поколений.

Жизненный цикл популяции - это несколько случайных скрещиваний (посредством кроссовера) и мутаций, в результате которых к популяции добавляется какое-то количество новых индивидуумов. Отбор в генетическом алгоритме - это процесс формирования новой популяции из старой, после чего старая популяция погибает. После отбора к новой популяции опять применяются операции кроссовера и мутации, затем опять происходит отбор, и так далее.

Отбор в генетическом алгоритме тесно связан с принципами естественного отбора в природе следующим образом:

Таким образом, модель отбора определяет, каким образом следует строить популяцию следующего поколения. Как правило, вероятность участия индивидуума в скрещивании берется пропорциональной его приспособленности. Часто используется так называемая стратегия элитизма, при которой несколько лучших индивидуумов переходят в следующее поколение без изменений, не участвуя в кроссовере и отборе. В любом случае каждое следующее поколение будет в среднем лучше предыдущего. Когда приспособленность индивидуумов перестает заметно увеличиваться, процесс останавливают и в качестве решения задачи оптимизации берут наилучшего из найденных индивидуумов.

Возвращаясь к задаче оптимального распределения инвестиций, поясним особенности реализации генетического алгоритма в этом случае.

  • Индивидуум = вариант решения задачи = набор из 10 хромосом Х j
  • Хромосома Х j = объем вложения в проект j = 16-разрядная запись этого числа
  • Так как объемы вложений ограничены, не все значения хромосом являются допустимыми. Это учитывается при генерации популяций.
  • Так как суммарный объем инвестиций фиксирован, то реально варьируются только 9 хромосом, а значение 10-ой определяется по ним однозначно.

Ниже приведены результаты работы генетического алгоритма для трех различных значений суммарного объема инвестиций K.

Цветными квадратами на графиках прибылей отмечено, какой объем вложения в данный проект рекомендован генетическим алгоритмом.     Видно, что при малом значении K инвестируются только те проекты, которые прибыльны при минимальных вложениях.


Если увеличить суммарный объем инвестиций, становится прибыльным вкладывать деньги и в более дорогостоящие проекты.

При дальнейшем увеличении K достигается порог максимального вложения в прибыльные проекты, и инвестирование в малоприбыльные проекты опять приобретает смысл.

3. Особенности генетических алгоритмов

Генетический алгоритм - новейший, но не единственно возможный способ решения задач оптимизации. С давних пор известны два основных пути решения таких задач - переборный и локально-градиентный. У этих методов свои достоинства и недостатки, и в каждом конкретном случае следует подумать, какой из них выбрать.

Рассмотрим достоинства и недостатки стандартных и генетических методов на примере классической задачи коммивояжера (TSP - travelling salesman problem). Суть задачи состоит в том, чтобы найти кратчайший замкнутый путь обхода нескольких городов, заданных своими координатами. Оказывается, что уже для 30 городов поиск оптимального пути представляет собой сложную задачу, побудившую развитие различных новых методов (в том числе нейросетей и генетических алгоритмов).

Каждый вариант решения (для 30 городов) - это числовая строка, где на j-ом месте стоит номер j-ого по порядку обхода города. Таким образом, в этой задаче 30 параметров, причем не все комбинации значений допустимы. Естественно, первой идеей является полный перебор всех вариантов обхода.

Переборный метод наиболее прост по своей сути и тривиален в программировании. Для поиска оптимального решения (точки максимума целевой функции) требуется последовательно вычислить значения целевой функции во всех возможных точках, запоминая максимальное из них. Недостатком этого метода является большая вычислительная стоимость. В частности, в задаче коммивояжера потребуется просчитать длины более 10 30 вариантов путей, что совершенно нереально. Однако, если перебор всех вариантов за разумное время возможен, то можно быть абсолютно уверенным в том, что найденное решение действительно оптимально.

Второй популярный способ основан на методе градиентного спуска. При этом вначале выбираются некоторые случайные значения параметров, а затем эти значения постепенно изменяют, добиваясь наибольшей скорости роста целевой функции. Достигнув локального максимума, такой алгоритм останавливается, поэтому для поиска глобального оптимума потребуются дополнительные усилия. Градиентные методы работают очень быстро, но не гарантируют оптимальности найденного решения.

Они идеальны для применения в так называемых унимодальных задачах, где целевая функция имеет единственный локальный максимум (он же - глобальный). Легко видеть, что задача коммивояжера унимодальной не является.

Типичная практическая задача, как правило, мультимодальна   и многомерна, то есть содержит много параметров. Для таких задач не существует ни одного универсального метода, который позволял бы достаточно быстро найти абсолютно точное решение.

Однако, комбинируя переборный и градиентный методы, можно надеяться получить хотя бы приближенное решение, точность которого будет возрастать при увеличении времени расчета.

Генетический алгоритм представляет собой именно такой комбинированный метод. Механизмы скрещивания и мутации в каком-то смысле реализуют переборную часть метода, а отбор лучших решений - градиентный спуск. На рисунке показано, что такая комбинация позволяет обеспечить устойчиво хорошую эффективность генетического поиска для любых типов задач.

Итак, если на некотором множестве задана сложная функция от нескольких переменных, то генетический алгоритм - это программа, которая за разумное время находит точку, где значение функции достаточно близко к максимально возможному. Выбирая приемлемое время расчета, мы получим одно из лучших решений, которые вообще возможно получить за это время.

Компанией Ward Systems Group подготовлен наглядный пример решения задачи коммивояжера с помощью генетического алгоритма. Для этого была использована библиотека функций продукта GeneHunter.

В этом разделе описывается концепция простого генетического алгоритма (ГА), ориентированного на решение различных оптимизационных задач. Вводятся и содержательно описываются понятия, используемые в теории и приложениях ГА. Приводится фундаментальная теорема ГА и излагается теория схем, составляющие теоретическую базу ГА. Обсуждаются концептуальные вопросы, касающиеся преимуществ и недостатков ГА.

1.1. Простой генетический алгоритм

Основы теории генетических алгоритмов сформулированы Дж. Г.Холландом в основополагающей работе и в дальнейшем были развиты рядом других исследователей. Наиболее известной и часто цитируемой в настоящее время является монография Д.Голдберга , где систематически изложены основные результаты и области практического применения ГА.

ГА используют принципы и терминологию, заимствованные у биологической науки – генетики. В ГА каждая особь представляет потенциальное решение некоторой проблемы. В классическом ГА особь кодируется строкой двоичных символов – хромосомой, каждый бит которой называется геном. Множество особей – потенциальных решений составляет популяцию. Поиск оптимального или субоптимального решения проблемы выполняется в процессе эволюции популяции, т.е. последовательного преобразования одного конечного множества решений в другое с помощью генетических операторов репродукции, кроссинговера и мутации. ЭВ используют механизмы естественной эволюции, основанные на следующих принципах:

  1. Первый принцип основан на концепции выживания сильнейших и естественного отбора по Дарвину, который был сформулирован им в 1859 году в книге "Происхождение видов путем естественного отбора". Согласно Дарвину особи, которые лучше способны решать задачи в своей среде, чаще выживают и чаще размножаются (репродуцируют). В генетических алгоритмах каждая особь представляет собой решение некоторой проблемы. По аналогии с этим принципом особи с лучшими значениями целевой (фитнесс) функции имеют большие шансы выжить и репродуцировать. Формализацию этого принципа, как мы увидим далее, реализует оператор репродукции.
  2. Второй принцип обусловлен тем фактом, что хромосома потомка состоит из частей, полученных из хромосом родителей. Этот принцип был открыт в 1865 году Г.Менделем. Его формализация дает основу для оператора скрещивания (кроссинговера).
  3. Третий принцип основан на концепции мутации, открытой в 1900 году де Вре. Первоначально этот термин использовался для описания существенных (резких) изменений свойств потомков и приобретение ими свойств, отсутствующих у родителей. По аналогии с этим принципом генетические алгоритмы используют подобный механизм для резкого изменения свойств потомков и, тем самым, повышают разнообразие (изменчивость) особей в популяции (множестве решений).

Эти три принципа составляют ядро ЭВ. Используя их, популяция (множество решений данной проблемы) эволюционирует от поколения к поколению.

Эволюцию искусственной популяции – поиск множества решений некоторой проблемы, формально можно описать в виде алгоритма, который представлен на рис.1.1.

ГА получает множество параметров оптимизационной проблемы и кодирует их последовательностями конечной длины в некотором конечном алфавите (в простейшем случае в двоичном алфавите "0" и "1").

Предварительно простой ГА случайным образом генерирует начальную популяцию хромосом (стрингов). Затем алгоритм генерирует следующее поколение (популяцию) с помощью трех следующих основных генетических операторов :

  1. оператора репродукции (ОР);
  2. оператора скрещивания (кроссинговера, ОК);
  3. оператора мутации (ОМ).

Генетические алгоритмы – это не просто случайный поиск , они эффективно используют информацию, накопленную в процессе эволюции.

В процессе поиска решения необходимо соблюдать баланс между "эксплуатацией" полученных на текущий момент лучших решений и расширением пространства поиска. Различные методы поиска решают эту проблему по-разному.

Например, градиентные методы практически основаны только на использовании лучших текущих решений, что повышает скорость сходимости с одной стороны, но порождает проблему локальных экстремумов с другой. В полярном подходе случайные методы поиска используют все