Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Выражение логических связок (логических постоянных) в естественном языке. Высказывания-простые и составные

Выражение логических связок (логических постоянных) в естественном языке. Высказывания-простые и составные

Сложным называют суждение, содержащее логические связки и состоящее из нескольких простых суждений.

В дальнейшем простые суждения мы будем рассматривать как некие неделимые атомы, как элементы, из соединения которых возникают сложные структуры. Простые суждения будем обозначать отдельными латинскими буквами: a, b, c, d, … Каждая такая буква представляет некоторое простое суждение. Откуда это видно? Отвлекаясь от сложной внутренней структуры простого суждения, от его количества и качества, забыв о том, что в нем имеется субъект и предикат, мы удерживаем лишь одно свойство суждения – то, что оно может быть истинным или ложным. Все остальное нас здесь не интересует. И когда мы говорим, что буква «a» представляет суждение, а не понятие, не число, не функцию, мы имеем в виду только одно: это «a» представляет истину или ложь. Если под «a» мы подразумеваем суждение «Кенгуру живут в Австралии», мы подразумеваем истину; если же под «а» мы подразумеваем суждение «Кенгуру живут в Сибири», мы подразумеваем ложь. Таким образом, наши буквы «a», «b», «c» и т.д. – это переменные, вместо которых могут подставляться истина или ложь.

Логические связки представляют собой формальные аналоги союзов нашего родного естественного языка. Как сложные предложения строятся из простых с помощью союзов «однако», «так как», «или» и т.п., так и сложные суждения образуются из простых с помощью логических связок. Здесь ощущается гораздо большая связь мысли с языком, поэтому в дальнейшем мы вместо слова «суждение», обозначающего чистую мысль, часто будем использовать слово «высказывание», обозначающее мысль в ее языковом выражении. Итак, давайте познакомимся с наиболее употребительными логическими связками.

Отрицание. В естественном языке ему соответствует выражение «Неверно, что…». Отрицание обычно обозначается знаком «», стоящим перед буквой, представляющей некоторое суждение: «а» читается «Неверно, что а». Пример: «Неверно, что Земля – шар».

Следует обратить внимание на одно тонкое обстоятельство. Выше мы говорили о простых отрицательных суждениях. Как их отличить от сложных суждений с отрицанием? Логика различает два вида отрицания – внутреннее и внешнее. Когда отрицание стоит внутри простого суждения перед связкой «есть», то в этом случае мы имеем дело с простым отрицательным суждением, например: «Земля не шар». Если же отрицание внешним образом присоединяется к суждению, например: «Неверно, что Земля – шар», то такое отрицание рассматривается как логическая связка, преобразующая простое суждение в сложное.

Конъюнкция. В естественном языке этой связке соответствуют союзы «и», «а», «но», «однако» и т.п. Чаще всего конъюнкция обозначается значком «&». Сейчас этот значок часто встречается в названиях различных фирм и предприятий. Суждение с такой связкой называется конъюнктивным, или просто конъюнкцией, и выглядит следующим образом:



a & b. Пример: «В корзине у деда лежали подберезовики и маслята». Это сложное суждение представляет собой конъюнкцию двух простых суждений: – «В корзине у деда лежали подберезовики» и «В корзине у деда лежали маслята».

Дизъюнкция. В естественном языке этой связке соответствует союз «или». Обычно она обозначается знаком «v». Суждение с такой связкой называется дизъюнктивным, или просто дизъюнкцией, и выглядит следующим образом: a v b.

Союз «или» в естественном языке употребляется в двух разных смыслах: нестрогое «или» – когда члены дизъюнкции не исключают друг друга, т.е. могут быть одновременно истинными, и строгое «или» (часто заменяется парой союзов «либо…, либо…») – когда члены дизъюнкции исключают друг друга. В соответствии с этим различают и два вида дизъюнкции – строгую и нестрогую.

Импликация. В естественном языке ей соответствует союз «если… то». Она обозначается знаком «->». Суждение с такой связкой называется импликативным, или просто импликацией, и выглядит следующим образом: a -> b. Пример: «Если по проводнику проходит электрический ток, то проводник нагревается». Первый член импликации называется антецедентом, или основанием; второй – консеквентом, или следствием. В повседневном языке союз «если… то» обычно соединяет предложения, которые выражают причинно-следственную связь явлений, причем первое предложение фиксирует причину, а второе – следствие. Отсюда и названия членов импликации.

Представление высказываний естественного языка в символическом виде с помощью указанных выше обозначений означает их формализацию, которая во многих случаях оказывается полезной.

4) Прекрасный остров лежал в теплом океане. И все бы хорошо, да повадились на этом острове устраиваться на жительство чужестранцы. Едут и едут со всех концов света, уж коренных жителей стеснять стали. Дабы воспрепятствовать нашествию чужестранцев, правитель острова издал указ: «Всякий приезжий, желающий поселиться на нашем благословенном острове, обязан высказать какое-нибудь суждение. Если суждение окажется истинным, чужестранца следует расстрелять; если же суждение окажется ложным, его следует повесить». Боишься – тогда молчи и поворачивай восвояси!

Спрашивается: какое нужно высказать суждение, чтобы остаться в живых и все-таки поселиться на острове?

Таблицы истинности

Теперь мы подошли к очень важному и трудному вопросу. Сложное суждение – это тоже мысль, которая что-то утверждает или отрицает и которая поэтому оказывается истинной или ложной. Вопрос об истинности простых суждений лежит вне сферы логики – на него отвечают конкретные науки, повседневная практика или наблюдение. Истинно или ложно суждение «Все киты – млекопитающие»? Нужно спросить биолога, и он скажет нам, что это суждение истинно. Истинно или ложно суждение «Железо тонет в воде»? Нужно обратиться к практике: бросим в воду какую-нибудь железку и убедимся, что это суждение истинно.

Короче говоря, вопрос об истинности или ложности простых суждений в итоге всегда решается посредством обращения к той реальности, к которой они относятся.

Но как установить истинность или ложность сложного суждения? Пусть у нас имеется некоторая конъюнкция «a & b» и нам известно, что суждение «a» истинно, а суждение «b» ложно. Что можно сказать об этом сложном высказывании в целом? Если бы в реальности существовал объект, к которому относится связка «&», то трудности не возникло бы: обнаружив этот объект, мы могли бы сказать: «Есть! Конъюнкция истинна!»; обшарив все вокруг и не обнаружив соответствующего объекта, мы бы констатировали: «Конъюнкция ложна». Но дело в том, что логическим связкам – как, впрочем, и союзам естественного языка – в реальности ничего не соответствует! Это изобретенные нами средства связи мыслей или предложений, это – орудия мышления, не имеющие аналогов в реальности. Поэтому вопрос об истинности или ложности высказываний с логическими связками – не вопрос конкретных наук или материальной практики, а чисто логический вопрос. И его решает логика.

Мы договариваемся или принимаем соглашения относительно того, когда высказывания с той или иной логической связкой считать истинными, а когда – ложными. Конечно, в основе этих соглашений лежат некоторые рациональные соображения, однако важно иметь в виду, что это – наши произвольные соглашения, принятые в целях удобства, простоты, плодотворности, но не навязанные нам реальностью. Поэтому мы вольны изменять эти соглашения и делаем это, когда считаем нужным.

Соглашения, о которых идет речь, выражаются таблицами истинности для логических связок, показывающими, в каких случаях высказывание с той или иной связкой считается истинным, а в каких – ложным. При этом мы опираемся на истинность или ложность простых суждений, являющихся компонентами сложного суждения. «Истина» («и») и «ложь» («л») называются «истинностными значениями» суждения: если переменная представляет истинное суждение, она принимает значение «истина»; если же – ложное, она принимает значение «ложь». Каждая переменная может представлять как истину, так и ложь.

Отрицание применяется к одному суждению. Это суждение может быть истинным или ложным, поэтому таблица для отрицания выглядит следующим образом:

Если исходное суждение истинно, то его отрицание мы договариваемся считать ложным; если же исходное суждение ложно, то его отрицание мы считаем истинным. Кажется, такое соглашение соответствует нашей интуиции. Действительно, суждение «Байрон был английским поэтом» истинно, поэтому его отрицание «Неверно, что Байрон был английским поэтом» естественно считать ложным. Суждение «Афины находятся в Италии» ложно, поэтому его отрицание «Неверно, что Афины находятся в Италии» естественно считать истинным.

Таблицы истинности для остальных логических связок мы для удобства приводим все вместе:

Все приведенные здесь связки соединяют два суждения. Для двух суждений имеется четыре возможности: оба могут быть истинными; одно истинно, другое – ложно; одно ложно, другое – истинно; оба ложны. Все эти возможности учтены как случаи 1-4.

Конъюнкция истинна только в одном случае – когда оба ее члена истинны. Во всех остальных случаях мы считаем ее ложной. В общем, это кажется довольно естественным. Допустим, вы говорите своему избраннику: «Я выйду за тебя замуж и буду тебе верна». Вы действительно вышли замуж за этого человека и храните ему верность. Он доволен: вы его не обманули, конъюнкция в целом истинна. Второй случай: вы вышли замуж, но не храните верности своему мужу. Он негодует, считает, что вы его обманули, – конъюнкция ложна. Третий случай: вы не вышли замуж за того, кому обещали, хотя и храните ему верность, лелея воспоминания о первой и, увы, единственной любви. Опять-таки он в расстроенных чувствах: вы его обманули – конъюнкция ложна. Наконец, четвертый вариант: вы и замуж за него не вышли и, естественно, верности ему не храните. Ваш поклонник в бешенстве: вы его нагло обманули – конъюнкция ложна.

Аналогичные соображения оправдывают и таблицу истинности для дизъюнкции. Несколько сложнее обстоит дело с импликацией. Рассмотрим суждение «Если солнце взошло, на улице стало светло». Здесь импликация соединяет два простых суждения «Солнце взошло» и «На улице стало светло». Когда оба они истинны, то импликацию в целом мы считаем истинной. Теперь второй случай: солнце взошло, но на улице светло не стало. Если такое вдруг произошло, мы сочтем нашу импликацию ложной: видимо, чего-то мы не учли, когда формулировали такую связь между двумя суждениями. Третий случай: солнце не взошло, но на улице стало светло. Опровергнет ли это нашу импликацию? Отнюдь нет, такое вполне возможно: на улице зажглись фонари, стало светло, но это не противоречит связи между восходом солнца и наступлением светлого времени суток. Импликацию можно считать истинной. Наконец, четвертый случай: солнце не взошло и светло не стало. Это вполне естественно, наша импликация остается истинной.

Поясняя таблицы истинности для логических связок, мы старались показать, что эти таблицы в какой-то мере соответствуют нашей языковой интуиции, нашему пониманию смысла союзов естественного языка. Однако не следует переоценивать степень такого соответствия. Союзы естественного языка гораздо богаче и тоньше по смысловому содержанию, нежели логические связки. Последние схватывают лишь ту часть этого содержания, которая относится к соотношениям истинности или ложности простых высказываний. Более тонких смысловых связей логические связки не учитывают. Поэтому иногда возможно довольно большое расхождение между логическими связками и союзами естественного языка. С помощью этих связок создают программы для компьютеров, и теперь вы можете понять, какую часть нашего мышления способен усвоить и использовать компьютер.

5) Как разделить 7 яблок поровну между 12 мальчиками, не разрезая при этом ни одного яблока на 12 частей? (Наложенное условие призвано исключить самое простое решение: разрезать каждое яблоко на 12 частей и дать каждому мальчику по одной дольке от каждого яблока или 6 яблок разрезать пополам, а 7-е яблоко разрезать на 12 частей.)

6) На одном острове живут два племени – молодцы, которые всегда говорят правду, и лжецы, которые всегда лгут. На остров приезжает путешественник, который знает об этом, и, встретив местного жителя, спрашивает его: «Кто ты, из какого рода-племени?» «Я молодец!» – гордо отвечает абориген. «Вот хорошо, – обрадовался путешественник, – будешь моим проводником!» Гуляют они по острову и вдруг видят вдалеке еще одного аборигена. «Пойди спроси у него, – говорит путешественник своему проводнику, – из какого он племени?» Проводник сбегал вернулся и доложил. «Он сказал, что он – молодец!» «Ага, – подумал путешественник, – теперь я точно знаю, из какого племени ты сам!»

Как путешественник догадался, кем был его проводник?

Сформулируем основные правила образования новых предложений из исходных с помощью основных связок и союзов обычного разговорного языка. Одних только правил русского языка бывает недостаточно, так как иногда в одно и то же предложение, сформулированное на русском языке, мы вкладываем разный смысл. Для примера рассмотрим оборот речи «Если, то», с помощью которого сформулируем два предложения:

  • 1) «Если Миша сдаст экзамен на отлично, то пойдет на дискотеку».
  • 2) «Если Миша не сдаст экзамен на отлично, то на дискотеку не пойдет».

Вопрос: в этих предложениях говорится об одном и том же или существует ситуация, когда одно из предложений является верным, а другое ложным? Другими словами, спрашивается, равносильны ли эти предложения.

До тех пор, пока мы четко нс определим правила построения подобного рода фраз, на вопрос ответить однозначно нельзя. С одной стороны, формулируя первое предложение, мы часто подразумеваем и второе предложение. Однако посмотрим на эти предложения с другой стороны.

Вначале запишем схемы предложений. Для этого предложение «Миша сдаст экзамен на отлично» обозначим буквой А , а предложение «Миша пойдет на дискотеку» - буквой В. Тогда данные предложения схематично можно записать так:

I) «Если А , то В», 2) «Если не А , то не В».

Теперь подставим вместо А и В другие предюжения. Вместо А возьмем: «Стол сделан из дуба», вместо В «Стол является деревянным». Тогда получим другую пару предложений:

  • 1) «Если стол дубовый, то он деревянный»,
  • 2) «Если стол не дубовый, то он не деревянный».

Так как эти предложения построены по тем же схемам, что первые два, значит, равносильность первой пары предложений должна означать равносильность второй пары. Однако первое предложение в обыденной речи, очевидно, является верным высказыванием, так как дуб - это дерево, а второе предложение по общепринятому смыслу ложно, так как стол может быть сделан из другого дерева, например из сосны.

Таким образом, в общем случае предложения, построенные по схемам «Если А , то В» и «Если не А, то не В », нельзя считать логически одинаковыми.

Итак, для того чтобы исключить двусмысленность при конструкции предложений, нужны четкие правила, позволяющие определять истинность или ложность получаемого предложения в зависимости от истинности или ложности исходных предложений А и В.

Придадим союзам «и», «или», а также схемам «если, то», «тогда и только тогда», «неверно, что» однозначный логический смысл.

Пусть буквы А и В обозначают произвольные предложения. Начнем с простых ситуаций.

1. Знак отрицания ~| (-i) или. Выражение ~li (-Л, А ) читается: «не А» или «неверно, что А».

Значения предложения определим таблицей, из которой видно, что предложение истинно в точности тогда, когда исходное предложение А ложно:

При формулировке простых по структуре предложений частицу «не» иногда можно «проносить вовнутрь» предложения. Например, предложение

«Неверно, что число V6 целое» можно сформулировать так: «Число л/6 не целое». Также предложение «Неверно, что прямые а и b пересекаются» формулируют: «Прямые а и b нс псрссскаются».

Часто объект, который не обладает каким-то свойством, называют термином с частицей «не». Например, целое число, не являющееся четным, называется нечетным. Поэтому одинаково правильно говорить «Целое число нечетное» и «Целое число не является четным». Но без оговорки, что число целое, мы имеем разные по смыслу предложения. Например, «Число 0,2 не является четным» - истина, а предложение «Число 0,2 нечетное» - ложь.

Рассмотрим словосочетание «нечетная функция». Здесь мы имеем самостоятельный термин и слово «нечетная» нельзя писать и произносить раздельно, то есть предложение «Функция является нечетной» не является отрицанием предложения «Функция является четной». Действительно, существует пример функции, при котором оба предложения ложны. Например, функция )т=х+ не является четной и не является нечетной (постарайтесь объяснить это).

2. Знак конъюнкции л. Выражение ЛлВ читается: «А и В». Иногда конъюнкция обозначается знаком &.

Значения предложения АлВ в зависимости от составляющих его предложений А и В определены таблицей:

Таким образом, предложение АлВ истинно только в одном случае, когда оба предложения А и В истинны. В остальных случаях это предложение ложно. При формулировке предложения АлВ вместо союза «и» можно использовать другие союзы, имеющие тот же логический смысл одновременного выполнения каждого из предложений: «а», «но».

Пример 1.3.1. Предложение «Число 111 нс делится на 2, но делится на 3» - символически можно записать 1АлВ, где А = «111 делится на 2», В = « 111 делится на 3».

3. Знак дизъюнкции v. Выражения AvB читается: «А или В».

Значения предложения AvB определены таблицей:

Из таблицы видно, что предложение «А или В» истинно в тех случаях, когда хотя бы одно из предложений А или В истинно, а в случае, когда оба предложения А и В ложны, предложение AvB принимает ложное значение.

Иногда из содержания предложений А и В вытекает, что предложения не могут быть одновременно истинны. В этом случае предложение формулируют с помощью союза «либо». Например, предложение «Число либо положительное, либо отрицательное» также имеет вид «А или В », но вместе с тем имеет такой подтекст, что одновременно и положительным, и отрицательным число быть не может.

Сформулированные выше правила, по всей видимости, вопросов не вызывают. Перейдем к рассмотренной в начале пункта схеме «Если А, то В».

4. Знак импликации -Выражение А->В читается: «Если А, то В». Иногда для обозначения этой связки используется другое обозначение стрелки =>, а также знак z>. Наряду с фразой «Если А , то В» используют другие, аналогичные ей: «В тогда, когда А », «А только тогда, когда В».

Мотивируем определение значений предложения А->В. Основная трудность, которая здесь возникает, состоит в присвоении значения предложению Л-»# для тех случаев, когда А ложно. Чтобы разумно определить значения, вспомним рассмотренное выше верное предложение: «Если стол дубовый, то он деревянный». Здесь А = «Стол дубовый», В = «Стол деревянный». Пусть стол сделан из сосны. Тогда А ложно, В истинно. Пусть стол будет железным. Тогда А ложно и В ложно. В обоих случаях предложение А ложно, а получаемое предложение «Если А , то В» истинно. При этом оба эти случая реально возможны. Конечно, возможен случай, когда мы имеем дубовый стол, тогда Aw В одновременно истинны. А вот примера истинного предложения А->В, когда А=и> В=л , не существует.

Таким образом, случаи, когда А=и , В=и, или А=л у В=и , или А=л , В=л, должны определять истинное предложение И лишь один случай, при

котором А=и , В-л, означает, что предложение А->В ложно.

Итак, в математической логике значения предложения Т-задаются приведенной таблицей:

В дальнейшем всюду фраза «Если А , то В» будет пониматься именно так. Здесь предложение А называется посылкой , или условием , а В - заключением.

Пример 13.2. Родители пообещали своему сыну Пете: если он успешно окончит университет, они купят ему машину. Известно, что сын университет не окончил, а машину ему родители все-таки купили. Можно ли утверждать, что слова родителей были ложью?

Чтобы ответить на вопрос, рассмотрим предложения: А = «Сын оканчивает университет», В = «Ему покупают машину». При этом А=л, В=и. Обещание родителей имеет вид А^>В. По определению это предложение при заданных значениях А и В верно (третья строка таблицы). Поэтому с точки зрения логики слова родителей верны. А вот если бы их сын окончил институт, а машину ему не купили, в этом случае (и ни в каком другом) обещание было бы не выполнено.

Теперь рассмотрим еще одну логическую связку, которую часто имеют в виду, когда говорят слова «если, то». Например, если в условиях примера 1.3.2 родители предполагали, что в случае, если их сын Петя нс окончит институт, они не купят ему машину, правильно было бы сказать: «Машина будет куплена в том и только в том случае, если Петя окончит институт».

5. Знак эквиваленции или. Выражение А читается: «А тогда и только тогда, когда В». Возможны другие формулировки: «А в том и только в том случае, если В », «А в точности тогда, когда В» и т. п.

Значения предложения АВ задаются таблицей:

В случаях, когда А и В принимают одинаковые значения, предложение АВ верно, в остальных случаях предложение ложно.

Нетрудно заметить, что фраза «А тогда и только тогда, когда В» состоит из двух фраз: «А тогда, когда В» и «А только тогда, когда В». Первое предложение записывается В->А, а второе А^>В. Эти два предложения одновременно истинны в двух случаях: А=и, В=и , а также А=л, В=л.

Итак, мы определили пять знаков: л (конъюнкция), v (дизъюнкция), -> (импликация), (эквиваленция), 1 (отрицание), которые называют

логическими сеялками. Эти знаки позволяют из данных предложений А и В получать новые предложения. При этом значение (истины или лжи) нового предложения однозначно определяется значениями предложений А и В. Правило получения нового предложения из исходных предложений называется логической операцией. Таким образом, каждая из логических связок определяет логическую операцию, которая имеет такое же название что и соответствующая ей связка.

Рассмотренные операции можно использовать и для высказываний, и для предикатов. Например, соединив два одноместных предиката «Число,т больше 3» и «Число х отрицательное» знаком дизъюнкции, получим одноместный предикат: «Число х больше 3 или огри нательное». Единственно, для того чтобы соединить два предиката логической связкой, нужно, чтобы была задана некоторая общая область D допустимых объектов, которые можно подставлять в данные предикаты вместо переменных.

Определим еще две логические связки, называемые кваитора.ми, которые позволяют из одноместных предикатов получать высказывания. Термин «квантор» в переводе с латинского языка означает «сколько». Поэтому эти знаки используются для ответа на вопрос о том, сколько объектов удовлетворяют предложению А у - все или хотя бы один.

Возьмем произвольный предикат, у которого выделим переменную, от которой зависит его значение. Обозначим его А(х).

6. Квантор общности V. Данный знак происходит от английского слова АН и является сокращением следующих слов: «вес», «каждый», «всякий», «любой».

Выражение Vj&4(y) означает, что предикат А(х) выполняется для всех допустимых объектов х. Читается: «Для всех икс а от икс».

7. Квантор существования 3. Данный знак происходит от английского слова Exist и является сокращением следующих слов: «существует», «найдется», «хотя бы один», «некоторый».

Выражение Зх4(*) означает, что предикат А(х) выполняется хотя бы для одного из допустимых объектов.v. Читается: «Существует икс а от икс».

Пример 1.3.3. Пусть переменная х обозначает студента вуза. Рассмотрим предложение А(х) = «Студент л: имеет машину». Тогда VxA(x) означает, что все студенты вузов имеют машину. Это ложное высказывание. Предложение ЭхА(х) означает, что некоторые студенты имеют машину, что является верным утверждением.

Таким образом, изначально мы имели предикат, значение которого зависело от значения переменной дг. После выполнения операций были получены именно высказывания, значения которых уже нс зависят от переменной х.

Пусть имеется формула Л(х), содержащая свободную переменную х. Тогда утверждение о том, что формула А(х) является тождественно истинной, кратко запишется Vj&4(jc).

Операция получения предложения с помощью кванторов называется квантификацией. При использовании выражений УхА(х) и 3хА(х) также говорят: «На переменную х навесили квантор» или «Переменную х связали квантором».

Заметим, что кванторные операции применимы не только к одноместным предикатам. Если будет дан двуместный предикат А{ху), то можно связать переменную л - квантором и образовать предложение /хА(ху), истинность которого будет зависеть уже только от одной переменной у, и мы будем иметь одноместный предикат. В этой записи переменная х называется связанной квантором , а переменная у - свободной. В общем случае, применив кванторную операцию к любой из переменных /7-местного предиката, в итоге получим (н-1)-местный предикат.

Кванторами можно связать любое количество переменных. Если имеем двуместный предикат А(ху), то формально можно получить 8 высказываний.

связав каждую переменную каким-то квантором: VjcfyA(xy), VyVxA(xy), Vx3уА(ху), 3yVxA(ху), 3xVyA(xy), /уЭхА(ху), ЗхЗуА(ху), ЗуЗхА(ху). Некоторые предложения имеют один и тот же смысл, например первое и второе (предикат А должен принимать истинное значение для любых значений * и у), а также седьмое и восьмое. Остальные выражения в общем случае дают разные по истинности высказывания.

Пример 1.3.4. Пусть в классе всего два мальчика - Петя и Коля. Для самостоятельного решения были заданы три задачи, обозначим их числами 1, 2, 3. Петя решил задачи 1 и 2, а Коля - одну задачу с номером 3. Введем предикат А(ху), который означает, что мальчик * решил задачу у. Здесь переменная х обозначает имя мальчика, а переменная у - номер задачи. Рассмотрим следующие высказывания.

Vx3yA(xy) = «Каждый мальчик решил хотя бы одну задачу» - истинное высказывание, так как и Петя решил две задачи, и Коля решил по крайней мерс одну задачу.

  • 3_yVx4(.*,y) = «Найдется задача, которую решили все мальчики класса» - ложь, так как такой задачи нет (и 1-ю и 2-ю задачи решил только Петя, а 3-ю - только Коля).
  • 3xVyA(x,y) = «Хотя бы один мальчик решил все задачи» - ложное утверждение.

V_yEx,4(;c,y) = «Каждая задача решена хотя бы одним учеником» - истина, так задача с номером 1 решена Петей, задача с номером 2 также решена Петей, а задача 3 решена Колей.

Из рассмотренного примера можно сделать вывод: порядок записи кванторов влияет на логический смысл предложения. Поэтому четкая формулировка предложения должна однозначно предполагать, в каком порядке идут кванторы общности и существования.

Упражнение. Самостоятельно проанализируйте значения высказываний из примера 1.3.4 в предположении, что Петя решил задачи с номерами 2 и 3.

В общем случае из предиката А(х) можно получить два высказывания - /хА(х) и 3x4(x). Однако очень часто записанная формула А{х) понимается именно как высказывание Vx4(.x), хотя квантор общности при записи или формулировке опускают. Например, записав д- 2 >0, имеют в виду, что квадрат любого действительного числа неотрицателен. Полная запись высказывания такова: Улг(дг?0). Запись (4х + 6у):2, где*, у - целые числа, предполагает, что указанная сумма всегда делится на 2, то есть четна. Чтобы это подчеркнуть, следует записать V*Vy((4.x + 6jy):2).

Определенные в двух последних пунктах математические знаки и знаки логических связок составляют алфавит математического языка.

ЛОГИЧЕСКИЕ СВЯЗКИ – символы логических языков, используемые для образования сложных высказываний (формул) из элементарных. Логическими связками называют также соответствующие этим символам союзы естественного языка. Обычно используются такие логические связки, как конъюнкция (союз «и», символические обозначения: &, ∧ и точка в виде знака умножения, которые часто опускают, записывая конъюнкцию А и В как AB ), дизъюнкция (нестрогий союз «или», обозначается как «∨»), импликация («если..., то», обозначается с помощью знака «⊃» и различного рода стрелок), отрицание («неверно, что...», обозначается: , ~ или чертой над отрицаемым выражением). Из перечисленных отрицание является одноместной (унарной) связкой. Другие являются двухместными (бинарными). В принципе логические связки могут быть сколь угодно местными, но на практике более, чем бинарные, используются очень редко. В классической логике (Логика , Логика высказываний ) любые многоместные логические связки выразимы через перечисленные. Некоторый практический смысл дает использование тернарной логической связки, называемой условной дизъюнкцией, связывающей три высказывания А, В и С и означающей, что «А в случае В , и С в случае не-B » или формально: (B A )&(B C ) (Сидоренко Е.А. Пропозициональное исчисление с условной дизъюнкцией. – В кн.: Методы логического анализа. М., 1977).

Классическая логика рассматривает логические связки экстенсионально (игнорируя содержательный смысл связываемых ими высказываний) как функции истинности, определяемые истинностными значениями связываемых ими высказываний. При двух имеющих место в этой логике истинностных значениях 1 (истинно) и 0 (ложно) высказывания А и В могут иметь четыре возможных набора упорядоченных истинностных значений: <1,1>, <1,0>, <0,1>, <0,0>. Пропозициональная истинностная функция ставит в соответствие каждому перечисленному набору одно из значений истинности – 1 или 0. Всего таких функций 16. Конъюнкция приписывает выражению А &В значение 1 только в случае, когда как А , так и В истинны, т.е. оба имеют значение 1, в остальных случаях значение А &В равно 0. Дизъюнкция Α В, напротив, ложна только в одном случае, когда ложны как А , так и В. Импликация А В является ложной только при истинном (антецеденте) А и ложном (консеквенте) В. В остальных случаях А В принимает значение 1. Из четырех одноместных функций интерес представляет только отрицание, меняющее значение высказывания на противоположное: когда А – истинно, A – ложно, и наоборот. Все другие унарные и бинарные классические функции могут быть выражены через представленные. Когда принятая в соответствующей семантике система логических связок позволяет дать определение всех остальных, ее называют функционально полной. К полным системам в классической логике относятся, в частности, конъюнкция и отрицание; дизъюнкция и отрицание; импликация и отрицание. Конъюнкция и дизъюнкция определимы друг через друга за счет эквивалентностей (А &В )≡(А В) и (A∨B)≡(А &B), именуемых законами де Моргана, а также: (Α⊃Β)≡(Α В ), (А &В )≡(А ⊃B), (Α В )≡((А В )⊃A). Любая эквивалентность вида A В имеет силу только тогда, когда общезначима (всегда истинна) конъюнкция (А В )&(В A ).

Функции антидизъюнкция и антиконъюнкция, определимые соответственно как (А В) и (А &В ), также представляют каждая в отдельности функционально полную систему связок. Это последнее обстоятельство было известно уже Ч.Пирсу (неопубликованная при его жизни работа 1880 г.) и было переоткрыто X.Шеффером (H.M.Sheffer). Используя антидизъюнкцию как единственную логическую связку, Шеффер в 1913 построил полное исчисление высказываний. Антидизъюнкцию обозначают А В и называют штрихом Шеффера, читая данное выражение, как «не-A и не-B ». Ж.Нико (J. G.P.Nicod) употребил то же обозначение для антиконъюнкции («Неверно, что одновременно А и B ») и с помощью только этой связки в 1917 сформулировал полное исчисление высказываний с одной (всего!) аксиомой и одним правилом вывода. Т.о., штрихом Шеффера называют по сути саму вертикальную черту, которая у разных авторов может обозначать как антидизъюнкцию, так и антиконъюнкцию.

Экстенсиональность логических связок придает им однозначность, упрощает проблему построения логических исчислений, дает возможность решать для последних метатеоретические проблемы непротиворечивости, разрешимости, полноты (см. Металогика ). Однако в некоторых случаях истинностно-функциональная трактовка связок приводит к значительному несоответствию с тем, как они понимаются в естественном языке. Так, указанная истинностная интерпретация импликации вынуждает признавать верными предложения вида «Если А, то B » даже в том случае, когда между высказываниями А и В (и, соответственно, событиями, о которых в них идет речь) нет никакой реальной связи. Достаточно, чтобы А было ложным или В – истинным. Поэтому из двух предложений: «Если А, то В » и «Если В, то А », по крайней мере одно приходится признавать верным, что плохо сообразуется с обычным употреблением условной связки. Импликацию в данном случае специально называют «материальной», отличая ее тем самым от условного союза, предполагающего, что между антецедентом и консеквентом истинного условного высказывания имеется действительная связь. При этом материальная импликация может прекрасно использоваться во многих контекстах, напр., математических, когда при этом не забывают о ее специфических особенностях. В некоторых случаях, однако, именно контекст не позволяет трактовать условный союз как материальную импликацию, предполагая взаимосвязь высказываний. Для анализа таких контекстов приходится строить специальные неклассические логики , напр., релевантные (см. Релевантная логика ), в язык которых вместо материальной импликации (или наряду с ней) вводятся другие импликации, которые понимаются интенсионально (содержательно) и верность которых не может быть обоснована истинностно-функционально. Интенсионально могут трактоваться также другие логические связки.

Литература:

1. Чёрч А. Введение в математическую логику, т. 1. М., 1960;

2. Карри Х. Основания математической логики. М., 1969.

Е.А.Сидоренко

  • Аграрная и земельная реформы как неотъемлемое звено экономических реформ: понятия, исторические, идеологические и социально-экономические предпосылки
  • Адаптивные биологические ритмы. Циркадный и цирканный ритмы. Фотопериодизм.
  • Акцентологические нормы – умение правильно ставить ударение.
  • Аналогично вышеприведенному необходимо описать все основные геологические процессы, которые происходят на заданном участке).
  • Анатомо-морфологические и физиологические особенности лиц зрелого (среднего) и пожилого возраста
  • С грамматической точки зрения, высказывание – это повествовательное предложение.

    Сложные предложения строятся из выражений, обозначающих некоторые понятия, и логических связок. Слова и обороты НЕ, И, ИЛИ, ЕСЛИ … ТО, ТОГДА И ТОЛЬКО ТОГДА, СУЩЕСТВУЕТ, ВСЕ и некоторые другие называются логическими связками (операторами) и обозначают логические операции, с помощью которых из одних предложений строятся другие.

    Предложения без логических связок являются элементарными, их нельзя расчленить на части так, чтобы при этом каждая из частей была также предложением. Элементарные высказывания называются также высказываниями (суждениями). В высказываниях содержится информация о предметах, явлениях, процессах.

    Элементарное высказывание состоит из субъекта (логического подлежащего) – того, о чем идет речь в высказывании, и предиката (логического сказуемого) – того, что утверждается или отрицается в высказывании о субъекте.

    Таким образом, высказывание – это форма мышления, в которой утверждается или отрицается логическая связь между понятиями, выступающими в качестве субъекта и предиката данного высказывания. Соответствие или несоответствие этой связи реальности делает высказывание (суждение) истинным или ложным.

    Логическая связь между субъектом и предикатом высказывания выражается обычно в виде связки ЕСТЬ или НЕ ЕСТЬ, хотя в самом предложении эта связка может отсутствовать, а лишь подразумеваться. При этом субъект высказывания может выражаться не обязательно только подлежащим в предложении, так же как и предикат – не только сказуемым (это могут быть и другие члены предложения). Что считать в предложении субъектом, а что предикатом высказывания определяется логическимударением. Логическое ударение связано со смыслом, содержащимся в предложении для говорящего или слушающего.

    По форме высказывания делятся на простые (имеющие логическую форму «S есть P » или «S не есть P », где S – субъект, P – предикат) и сложные (грамматически выражающиеся сложными предложениями).

    Пример простого высказывания: «Все медведи любят мед», сложного – «Некоторые медведи любят мед и молодые побеги бамбука».

    Простые высказывания позволяют выразить следующие типы высказываний:

    · атрибутивные высказывания – выражают принадлежность или не принадлежность свойства объекту или классу (например, Земля есть планета);



    · высказывания об отношениях– говорят о наличии отношения между объектами (например, 3<5 );

    · высказывания существования (экзистенциональные высказывания)– говорят о существовании или не существовании объекта или явления.

    Операции на множестве высказываний.

    Из элементарных высказываний можно составлять сложные высказывания с помощью логических операций. Элементарные высказывания, входящие в состав сложного высказывания, связываются логическими операторами не по смысловому описанию, а только по их истинностным значениям. Следовательно, сложные высказывания являются функциями от входящих в них элементарных высказываний. Все операции в логике высказываний описываются только таблицей истинности.

    К операциям на множестве высказываний относятся:

    · Отрицание. Для него таблица истинности:

    В естественном языке она чаще всего интерпретируется союзом «и».

    · Дизъюнкция двух элементарных высказываний истинна тогда и только тогда, когда истинно хотя бы одно из элементарных высказываний. Ее иногда называется логическим сложением или логическим максимумом. Таблица истинности дизъюнкции выглядит так:

    · Операция «исключающего или» задается следующей таблицей истинности, она истинна, когда истинен только один из операндов. Эту операцию еще называют строгой дизъюнкцией или логическим неравенством.

    В таком виде часто формулируются математические теоремы. Если теорема сформулирована как-нибудь иначе, то ее можно перефразировать в указанном виде, не теряя её сущности.

    ЛОГИЧЕСКИЕ СВЯЗКИ – символы логических языков, используемые для образования сложных высказываний (формул) из элементарных. Логическими связками называют также соответствующие этим символам союзы естественного языка. Обычно используются такие логические связки, как конъюнкция (союз «и», символические обозначения: &, ∧ и точка в виде знака умножения, которые часто опускают, записывая конъюнкцию А и В как AB), дизъюнкция (нестрогий союз «или», обозначается как «∨»), импликация («если..., то», обозначается с помощью знака «⊃» и различного рода стрелок), отрицание («неверно, что...», обозначается: , ~ или чертой над отрицаемым выражением). Из перечисленных отрицание является одноместной (унарной) связкой. Другие являются двухместными (бинарными). В принципе логические связки могут быть сколь угодно местными, но на практике более, чем бинарные, используются очень редко. В классической логике (Логика, Логика высказываний) любые многоместные логические связки выразимы через перечисленные. Некоторый практический смысл дает использование тернарной логической связки, называемой условной дизъюнкцией, связывающей три высказывания А, В и С и означающей, что «А в случае В, и С в случае не-B» или формально: (B⊃A)&(B⊃C) (Сидоренко Е.А. Пропозициональное исчисление с условной дизъюнкцией. – В кн.: Методы логического анализа. М., 1977).

    Классическая логика рассматривает логические связки экстенсионально (игнорируя содержательный смысл связываемых ими высказываний) как функции истинности, определяемые истинностными значениями связываемых ими высказываний. При двух имеющих место в этой логике истинностных значениях 1 (истинно) и 0 (ложно) высказывания А и В могут иметь четыре возможных набора упорядоченных истинностных значений: <1,1>, <1,0>, <0,1>, <0,0>. Пропозициональная истинностная функция ставит в соответствие каждому перечисленному набору одно из значений истинности – 1 или 0. Всего таких функций 16. Конъюнкция приписывает выражению А&В значение 1 только в случае, когда как А, так и В истинны, т.е. оба имеют значение 1, в остальных случаях значение А&В равно 0. Дизъюнкция Α ∨ В, напротив, ложна только в одном случае, когда ложны как А, так и В. Импликация А ⊃ В является ложной только при истинном (антецеденте) А и ложном (консеквенте) В. В остальных случаях А ⊃ В принимает значение 1. Из четырех одноместных функций интерес представляет только отрицание, меняющее значение высказывания на противоположное: когда А – истинно, A – ложно, и наоборот. Все другие унарные и бинарные классические функции могут быть выражены через представленные. Когда принятая в соответствующей семантике система логических связок позволяет дать определение всех остальных, ее называют функционально полной. К полным системам в классической логике относятся, в частности, конъюнкция и отрицание; дизъюнкция и отрицание; импликация и отрицание. Конъюнкция и дизъюнкция определимы друг через друга за счет эквивалентностей (А&В)≡(А∨В) и (A∨B)≡(А&B), именуемых законами де Моргана, а также: (Α⊃Β)≡(Α∨В), (А&В)≡(А⊃B), (Α∨В)≡((А⊃В)⊃A). Любая эквивалентность вида A ≡ В имеет силу только тогда, когда общезначима (всегда истинна) конъюнкция (А⊃В)&(В⊃A).

    Функции антидизъюнкция и антиконъюнкция, определимые соответственно как (А∨В) и (А&В), также представляют каждая в отдельности функционально полную систему связок. Это последнее обстоятельство было известно уже Ч.Пирсу (неопубликованная при его жизни работа 1880 г.) и было переоткрыто X.Шеффером (H.M.Sheffer). Используя антидизъюнкцию как единственную логическую связку, Шеффер в 1913 построил полное исчисление высказываний. Антидизъюнкцию обозначают А∣В и называют штрихом Шеффера, читая данное выражение, как «не-A и не-B». Ж.Нико (J. G.P.Nicod) употребил то же обозначение для антиконъюнкции («Неверно, что одновременно А и B») и с помощью только этой связки в 1917 сформулировал полное исчисление высказываний с одной (всего!) аксиомой и одним правилом вывода. Т.о., штрихом Шеффера называют по сути саму вертикальную черту, которая у разных авторов может обозначать как антидизъюнкцию, так и антиконъюнкцию.

    Экстенсиональность логических связок придает им однозначность, упрощает проблему построения логических исчислений, дает возможность решать для последних метатеоретические проблемы непротиворечивости, разрешимости, полноты (см. Металогика). Однако в некоторых случаях истинностно-функциональная трактовка связок приводит к значительному несоответствию с тем, как они понимаются в естественном языке. Так, указанная истинностная интерпретация импликации вынуждает признавать верными предложения вида «Если А, то B» даже в том случае, когда между высказываниями А и В (и, соответственно, событиями, о которых в них идет речь) нет никакой реальной связи. Достаточно, чтобы А было ложным или В – истинным. Поэтому из двух предложений: «Если А, то В» и «Если В, то А», по крайней мере одно приходится признавать верным, что плохо сообразуется с обычным употреблением условной связки. Импликацию в данном случае специально называют «материальной», отличая ее тем самым от условного союза, предполагающего, что между антецедентом и консеквентом истинного условного высказывания имеется действительная связь. При этом материальная импликация может прекрасно использоваться во многих контекстах, напр., математических, когда при этом не забывают о ее специфических особенностях. В некоторых случаях, однако, именно контекст не позволяет трактовать условный союз как материальную импликацию, предполагая взаимосвязь высказываний. Для анализа таких контекстов приходится строить специальные неклассические логики, напр., релевантные (см. Релевантная логика), в язык которых вместо материальной импликации (или наряду с ней) вводятся другие импликации, которые понимаются интенсионально (содержательно) и верность которых не может быть обоснована истинностно-функционально. Интенсионально могут трактоваться также другие логические связки.

    Е.А. Сидоренко

    Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин, А.А. Гусейнов, Г.Ю. Семигин. М., Мысль, 2010, т. II, Е – М, с. 439-440.

    Литература:

    Чёрч А. Введение в математическую логику, т. 1. М., 1960;

    Карри Х. Основания математической логики. М., 1969.