Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Закон фарадея масса вещества. Законы фарадея

Закон фарадея масса вещества. Законы фарадея

Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока. Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным. До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Опытное доказательство

Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

Количественное выражение

Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:

Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.

Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:

Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита. Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу. Ток будет перемещаться в сторону движения часовой стрелки.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Понятие самоиндукции

Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.

Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:

где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Значение индуктивности также формируется из закона Фарадея.

Недвижимая система

Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.

Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС. Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле. Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:

При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.

Труды в области электролиза

При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.

Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.

Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.

Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.

Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях. Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.

Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.

Электрический ток, проходящий через растворы электролитов, способствует разложению веществ и дает возможность получать химически чистые материалы. Данный процесс получил наименование электролиза, нашедшего широкое применение в промышленном производстве. Физические преобразования проводников, находящихся в жидкости, объясняет закон Фарадея для электролиза, на основании которого анод выполняет функцию положительного электрода, а катод - отрицательного.

С помощью этого явления осуществляется не только очистка металлов от примесей, но и выполняется нанесение тонких покрытий, защищающих и украшающих металлические поверхности.

Суть процесса электролиза

Электролизом называются процессы окислительно-восстановительных реакций, протекающие под принудительным воздействием электрического тока. Для его выполнения используется специальная емкость с электролитическим раствором, куда погружаются металлические штыри, соединенные с наружным источником питания.

Электрод, соединенный с полюсом отрицательного значения источника тока, считается катодом. Именно в данном месте частицы электролита восстанавливаются. Другой электрод подключается к плюсовому полюсу и носит название анода. На этом участке вещество электрода или частицы электролита окисляются. Химические реакции на этом участке происходят по-разному, в зависимости от материала анода и состава электролитического раствора. Поэтому, как утверждает химия, электроды по отношению к электролиту могут быть инертными или растворимыми.

К категории инертных относятся аноды, изготовленные из материала, не окисляющегося во время электролиза. В качестве примера можно привести графитовые или платиновые электроды. Растворимыми являются практически все остальные виды металлических анодов, подверженных окислению в ходе электролитической реакции.

Электролитами чаще всего служат различные виды растворов или расплавов, внутри которых происходит хаотичное движение заряженных частиц - ионов. Когда на них воздействует электрический ток, они начинают двигаться в определенном направлении: катионы - к катоду, анионы - к аноду. Попадая на электроды, они теряют свои заряды и оседают на них.

Таким образом, на катоде и аноде происходит накопление так называемых суммарных продуктов, состоящих из электрически нейтральных веществ. Весь процесс электролиза выполняется под напряжением, подаваемым на электроды. Данное напряжение U эл-за является типичным примером , требующейся для обеспечения нормального течения электролитических реакций. Чисто теоретически это напряжение принимает вид формулы: U эл-за = Е а - Е к, в которой Е а и Е к являются потенциалами химических реакций, происходящих на аноде и катоде.

Существует определенная связь между количеством электричества, протекавшего через раствор, и количеством вещества, выделенного в период электролитической реакции. Данное явление было описано английским физиком Фарадеем и оформлено в виде двух законов.

Первый закон Фарадея

Данный закон был выведен ученым экспериментальным путем. Он определяет пропорциональную зависимость между массой вещества, образующегося на электроде и зарядом, проходящим через электролитический раствор.

Эту пропорцию наглядно отображает формула m=k х Q=k х I х t, где k является коэффициентом пропорциональности или электрохимическим эквивалентом, Q - заряд, прошедший через электролит, t - время прохождения заряда, m - масса вещества, образовавшегося на электроде в результате реакции.

Первый закон Фарадея служит для определения количества первичных продуктов, образовавшихся в процессе электролиза на электродах. Масса этого вещества составляет суммарную массу всех ионов, попавших на электрод. Это подтверждается формулой m=m0 х N = m0 х Qq0 = m0q0 х I х t, в которой m0 и q0 соответственно являются массой и зарядом единичного иона. N=Qq0 - определяет количество ионов, попавших на электрод за время прохождения заряда Q через раствор электролита.

Следовательно, величина электрохимического эквивалента k представляет собой соотношение массы иона m0 используемого вещества и заряда q0 этого иона. Известно, что величина заряда иона составляет произведение валентности n этого вещества и элементарного заряда е, то есть, q0 = n х e. Исходя из этого, электрохимический эквивалент k будет выглядеть следующим образом: k = m0q0 = m0 х NAn х e х NA = 1F х μn. В этой формуле NA является постоянной Авогадро, μ - молярной массой данного вещества. F = e х NA является постоянной Фарадея и составляет 96485 Кл/моль.

Числовое значение данной величины равняется заряду, который должен быть пропущен через раствор электролита, для того чтобы на электроде выделился 1 моль вещества с одинаковой валентностью. Рассматриваемый закон Фарадея для электролиза примет вид еще одной формулы: m = 1F х μn х I х t.

Второй закон Фарадея

Следующий закон ученого Фарадея описывает, как электрохимический эквивалент будет зависеть от атомной массы вещества и его валентности. У этого коэффициента будет прямая пропорциональная зависимость с атомным весом и обратно пропорциональная - с валентностью вещества. С введением данной величины, второй закон Фарадея формулируется как пропорция электрохимических эквивалентов вещества и собственных химических эквивалентов этих веществ.

Если значения электрохимических эквивалентов взять за k1, k2, k3…kn, а химические эквиваленты принять за х1, х2, х3…xn, то k1/x1 = k2/x2 = k3/x3…kn/xn. Данное соотношение является постоянной величиной, одинаковой для любых используемых веществ: с = k/x и составляет 0,01036 мг-экв/к. Именно такое количество вещества в миллиграмм-эквивалентах выделяется на электродах за период прохождения в электролите электрического заряда, равного одному кулону.

Следовательно, второй закон Фарадея можно представить в виде формулы: k = cx. Если данной выражение использовать вместе с первым законом Фарадея, то в результате получится следующее выражение: m = kq = cxq = cxlt. Здесь категория с представляет собой универсальную постоянную, в размере 0,00001036 г-экв/к. Подобная формулировка дает возможность понять, что одни и те же токи, пропущенные через одинаковый промежуток времени в двух различных электролитах, выделят из них вещества с соблюдением рассмотренного химического эквивалента.

Поскольку x = A/n, то масса выделяемого вещества будет выглядеть как m = cA/nlt, с соблюдением прямой пропорции с атомным весом и обратной пропорции с валентностью.

Эти законы определяют соотношение между массой продукта, образующегося на электроде, и количеством электричества (электрическим зарядом), пропущенным через электролит.

Первый закон Фарадея гласит, что масса вещества, образующегося на электроде, пропорциональна количеству пропущенного электричества. Количественной мерой электрического заряда является единица фарадей. Фарадей - это заряд, который несет на себе один моль электронов или один моль однозарядных ионов.

Напомним, что число - это число Авогадро (см. разд. 4.2).

Разряд ионов серебра на катоде в процессе электролиза раствора нитрата серебра описывается уравнением полуреакции

Следовательно, электрический заряд в 1 фарадей (один моль электронов) разряжает 1 моль ионов серебра, в результате чего образуется 1 моль атомов серебра. Это означает, что пропускание заряда в 2 фарадея приведет к образованию 2 молей атомов серебра, пропускание 3 фарадеев заряда приведет к образованию 3 молей атомов серебра и т.д.

Второй закон Фарадея гласит, что для разряда одного моля какого-либо иона на электроде необходимо пропустить через электролит такое число фарадеев заряда, которое равно числу элементарных зарядов на этом ионе.

Моль 2 моля 1 моль Таким образом, для разряда одного моля ионов на катоде через него необходимо пропустить 2 фарадея заряда (2 моля электронов).

Моль 3 моля I моль

Для разряда одного моля ионов алюминия на катоде через него необходимо пропустить 3 фарадея заряда (3 моля электронов).

Моля 1 моль 2 моля

Для получения одного моля молекул брома в результате разряда двух молей ионов брома на аноде через него необходимо пропустить 2 фарадея заряда. Следовательно, для разряда одного моля ионов брома необходим один фарадей заряда.

Вычислим массу свинца, выделившегося на катоде в результате пропускания тока силой 2 А через расплавленный бромид в течение 30 мин

Выделение свинца на катоде происходит в результате следующей полуреакции:

Итак, 2 фарадея заряда (т. е. 2-96 500 Кл) позволяют получить 1 моль атомов РЬ (т. е. 207 г атомов РЬ). Отсюда

Учтем теперь, что ток силой 2 А, протекая в течение 30 мин, переносит заряд, равный 2-30-60 Кл. Следовательно,

Майкл Фарадей (1791-1867)

Английский химик и физик Майкл Фарадей был выдающимся экспериментатором и прославился как один из первых исследователей природы электричества и магнетизма.

Фарадей не смог получить в детстве систематического образования. В возрасте 14 лет он стал помощником переплетчика. Но вскоре он заинтересовался наукой и, прослушав лекцию знаменитого химика Гемфри Дэви, написал ему и отправил свои записи лекции. Дэви принял его ассистентом в свою лабораторию в Королевском институте в Лондоне. Фарадею было в то время 21 год.

Майкл Фарадей читает рождественскую лекцию в Королевском институте (Лондон, 1955 г.) в присутствии членов королевской семьи: лицом к нему в первом ряду - муж королевы, слева от него - принц Уэльский (впоследствии Эдуард VII), справа от него - герцог Эдинбургский.

В последующие годы Фарадей открыл два новых хлорида углерода. Ему удалось также перевести в жидкое состояние хлор и другие газы. В 1825 г. он сумел выделить бензол и в том же году был назначен заведующим лабораторией. В течение нескольких лет он занимался экспериментальным изучением электролиза и в конце концов сформулировал в 1834 г. свои знаменитые законы электролиза. К этому времени он уже открыл явление электромагнитной индукции.

Фарадей стал президентом Королевского общества и написал несколько книг, в том числе «Экспериментальные исследования по химии и физике» (1858). В 1855 г. из-за ухудшения памяти он вынужден был прекратить исследовательскую работу. В 1867 г. Фарадей умер.

    Батарейки используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления.

    Аккумуляторы используются для запуска двигателей машин, возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов.

    Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

Электролиз

Электро́лиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита .

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами - проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом - отрицательный . Положительные ионы - катионы - (ионы металлов, водородные ионы, ионы аммония и др.) - движутся к катоду, отрицательные ионы - анионы - (ионы кислотных остатков и гидроксильной группы) - движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений [ источник не указан 1854 дня ] , диоксида марганца , пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование). Также, электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации). Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).

Первый закон Фарадея

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит: если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональностиназываетсяэлектрохимическим эквивалентом вещества . Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Второй закон Фарадея

Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты .

Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

где F - постоянная Фарадея .

Второй закон Фарадея записывается в следующем виде

где М(г/моль) - молярная масса данного вещества, образовавшегося в результате электролиза; I(A) - сила тока, пропущенного через вещество или смесь веществ; дельта t(c)- время, в течение которого проводился электролиз; F (Кл·моль −1) - постоянная Фарадея; n - число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного).

Когда ионы электролита доходят до электродов, соединенных с полюсами источника постоянного тока, то положительные ионы получают недостающие электроны от отрицательного электрода и в процессе реакции восстановления превращаются в нейтральные атомы (молекулы); отрицательные ионы отдают электроны положительному электроду и в процессе реакции окисления превращаются в нейтральные атомы. Явление выделения вещества на электродах в процессе окислительно-восстановительной реакции при прохождении тока через электролит называется электролизом. Впервые электролиз наблюдал в 1803 г. в Петербурге - В. П. Петров. В 1833-1834 гг. английский физик М. Фарадей открыл законы электролиза, которые устанавливают, от чего и как зависит масса выделившегося при электролизе вещества.

Пропуская в течение одинаковых промежутков времени ток одной и той же силы через разные электролиты, Фарадей установил, что при этом на электродах выделяются различные количества вещества. Так, ток в 1 а за 1 сек из раствора азотнокислого серебра выделяет 1,118 мг серебра, из раствора медного купороса - 0,328 мг меди. Значит, масса выделяемого вещества при электролизе зависит от вещества. Скалярная величина, измеряемая массой вещества, выделившегося при электролизе током в 1 а за 1 сек , называется электрохимическим эквивалентом (обозначается k ). Электрохимический эквивалент имеет наименование кг / а*сек, или кг / к.

Если пропустить в течение времени t через раствор медного купороса небольшой ток, то катод слабо покрывается медью, а если ток большей силы - то за то же время на катоде выделится большее количество меди. Оставим силу тока той же, но увеличим теперь время. Замечаем, что меди выделяется еще больше. Пропуская через разные электролиты различные токи и тщательно измеряя массу вещества, выделяющегося на электродах из каждого электролита, Фарадей открыл первый закон электролиза: масса вещества, выделившегося при электролизе на электродах, прямо пропорциональна произведению силы тока и времени его прохождения через электролит.

Ток в 1 а за 1 сек при электролизе выделяет на электроде к кг вещества, а ток силой I а за время t сек - в It раз больше:

m = klt, или m = kq .

Это формулы первого закона Фарадея для электролиза.

Каждый ион несет с собой и определенную массу вещества и величину заряда, поэтому чем больше ионов подходит к электроду, т. е. чем сильнее ток в электролите, тем больше на электроде выделяется вещества.

Фарадей, пропуская один и тот же ток последовательно через несколько различных электролитов, заметил, что масса выделившегося на электродах вещества неодинакова, хотя сила тока и время его прохождения через различные электролиты были одними и теми же (рис. 109). Точно взвесив выделившиеся вещества, Фарадей заметил, что вес их не случаен, а зависит от химической природы вещества. На каждый грамм выделенного водорода всегда получалось 107,9 г серебра; 31,8 г меди; 29,35 г никеля. После введения химического эквивалента - отношения атомной массы (веса) к валентности - оказалось, что эти числа являются химическими эквивалентами данных веществ. Так как атомная масса А и валентность n - числа отвлеченные, то и отношение число отвлеченное.

Разделив электрохимические эквиваленты веществ на их химические эквиваленты, (k / M) , получим:

т. е. одно и то же число 1036*10 -11 кг / а*сек или 1036*10 -11 кг / к. Обозначив это постоянное число буквой С, запишем: C = 1036*10 -11 кг / а*сек . Следовательно, Отсюда электрохимический эквивалент

k = СМ.

Это формула второго закона Фарадея для электролиза, который читается так: электрохимические эквиваленты веществ прямо пропорциональны их химическим эквивалентам.

Заменив электрохимический эквивалент в формуле первого закона Фарадея, получим формулу обобщенного закона Фарадея для электролиза:



Массы выделившихся при электролизе веществ прямо пропорциональны их атомным весам и заряду, прошедшему через электролит, и обратно пропорциональны валентности вещества.

Законы Фарадея являются следствием ионной проводимости тока в электролите. Поясним это на таких примерах. Допустим, что производился электролиз одновалентных веществ, например растворов NaCl и AgNO 3 . Величины зарядов ионов Na и Ag одинаковы. Когда ионы переносят равные по величине заряды, как в том, так и в другом растворе к соответствующим электродам подойдет одинаковое количество ионов. Но при равном числе подошедших ионов массы отложившихся веществ Na и Ag будут не одинаковы, так как различны массы самих атомов Na и Ag. У натрия атомная масса 22,997; у серебра - 107,88; поэтому серебра выделится почти в пять раз больше. Значит, количество вещества, выделившегося при электролизе, прямо пропорционально его атомной массе, что и утверждается законом Фарадея.

В случае, когда в электролизе участвуют ионы разной валентности, например Аl, имеющий валентность, равную 3, и Na с валентностью, равной 1, количество ионов Аl и Na, переносящих один и тот же заряд, будет различно. Чем больше валентность иона, т. е. чем больше его заряд, тем меньшее количество ионов потребуется для переноса данного заряда (например, ионов Аl надо в три раза меньше, чем ионов Na). Такой зависимостью между валентностью и зарядом иона и объясняется то, что масса выделившегося при электролизе вещества обратно пропорциональна его валентности.

Благодаря простоте, дешевизне и большой чистоте полученных продуктов электролиз получил широкое применение в промышленности для добывания алюминия из бокситовых руд, очистки металлов (например, меди, цинка, золота, серебра) от примесей, покрытия металлических предметов слоем другого металла с целью предохранения их от ржавчины, придания твердости их поверхности (никелирование, хромирование), для изготовления украшений (серебрение, золочение), получения металлических копий с рельефных предметов (например, при изготовлении патефонных пластинок, матриц, клише).

Задача 30. Свинец высокой чистоты, применяемый в атомной энергетике, получают электрорафинированием. Вычислить массу свинца, выделенную за 1 ч током плотностью 0,02 а / см 2 и напряжением 0,5 в. Выход по току 95%. Каков расход электроэнергии на выделение 1 кг свинца? Площадь общего сечения катодов, на которых отлагается свинец, 10 м 2 .


При к п. д. электролитической ванны 100% за счет всей израсходованной электроэнергии A = UIt выделилось бы свинца m = klt , поэтому на выделение 1 кг свинца израсходовано энергии или

Вычислим

Отв.: М≈7,5 кг; А 1 ≈ 470 кдж / кг.