Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Как найти кинетическую энергию вращающегося тела. Кинетическая энергия при вращательном движении

Как найти кинетическую энергию вращающегося тела. Кинетическая энергия при вращательном движении

Основные динамические характеристики вращательного движения - момент импульса относительно оси вращения z:

и кинетическая энергия

В общем случае, энергия при вращении с угловой скоростью находится по формуле:

, где - тензор инерции .

В термодинамике

Точно по тем же самым рассуждениям, как и в случае поступательного движения, равнораспределение подразумевает, что при тепловом равновесии средняя вращательная энергия каждой частицы одноатомного газа: (3/2)k B T . Аналогично, теорема о равнораспределении позволяет вычислить среднеквадратичную угловую скорость молекул.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Энергия вращательного движения" в других словарях:

    У этого термина существуют и другие значения, см. Энергия (значения). Энергия, Размерность … Википедия

    ДВИЖЕНИЯ - ДВИЖЕНИЯ. Содержание: Геометрия Д....................452 Кинематика Д...................456 Динамика Д....................461 Двигательные механизмы............465 Методы изучения Д. человека.........471 Патология Д. человека............. 474… … Большая медицинская энциклопедия

    Кинетическая энергия энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    - (франц. marées, нем. Gezeiten, англ. tides) периодические колебания уровня воды вследствие притяжения Луны и Солнца. Общие сведения. П. всего заметнее по берегам океанов. Тотчас после малой воды наибольшего отлива, уровень океана начинает… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность … Википедия

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i-й точки , Ri– расстояние до оси вращения. Следовательно,

Сопоставив и можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.

В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью vc и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела

Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Основной закон динамики вращательного движения.

Динамика вращательного движения

Основной закон динамики вращательного движения:

или M=Je , где М - момент силы M=[ r · F ] , J - момент инерции -момент импульса тела.

если М(внешн)=0 - закон сохранения момента импульса. - кинетическая энергия вращающегося тела.

работа при вращательном движении.

Закон сохранения момента импульса.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A, p=mv - импульс материальной точки (рис. 1); L - псевдовектор, направление которого совпадает с направлением поступательного движения правого винта при его вращении от r к р.

Модуль вектора момента импульса

где α - угол между векторами r и р, l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса ri со скоростью vi . Скорость vi и импульс mivi перпендикулярны этому радиусу, т. е. радиус является плечом вектора mivi . Значит, мы можем записать, что момент импульса отдельной частицы равен

и направлен по оси в сторону, определяемую правилом правого винта.

Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу vi = ωri, получим

Таким образом, момент импульса твердого тела относительно оси равен моменту инерции тела относительно той же оси, умноженному на угловую скорость. Продифференцируем уравнение (2) по времени:

Эта формула - еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство

В замкнутой системе момент внешних сил М=0 и откуда

Выражение (4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения момента импульса также как и закон сохранения энергии является фундаментальным законом природы. Он связан со свойством симметрии пространства - его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Здесь мы продемонстрируем закон сохранения момента импульса с помощью скамьи Жуковского. Человек, сидящий на скамье, вращающаяся вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 2), вращается внешним механизмом с угловой скоростью ω1. Если человек прижмет гантели к телу, то момент инерции системы уменьшится. Но момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения ω2 увеличивается. Аналогичным образом, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, с целью уменьшить свой момент инерции и тем самым увеличить угловую скорость вращения.

Давление в жидкости и газе.

Молекулы газа, совершая хаотическое, хаотическое движение, не связаны или довольно слабо связаны силами взаимодействия, из-за чего движутся практически свободно и в результате соударений разлетаются во все стороны, при этом заполняя весь предоставленный им объем, т. е. объем газа определяется объемом занимаемого газом сосуда.

А жидкость же, имея определенный объем, принимает форму того сосуда, в который она заключена. Но в отличие от газов в жидкостях среднее расстояние между молекулами в среднем сохраняется постоянным, поэтому жидкость обладает практически неизменным объемом.

Свойства жидкостей и газов во многом сильно отличаются, но в нескольких механических явлениях их свойства определяются одинаковыми параметрами и идентичными уравнениями. По этой причине гидроаэромеханика - раздел механики, который изучает равновесие и движение газов и жидкостей, взаимодействие между ними и между обтекаемыми ими твердыми телами, - т.е. применяется единый подход к изучению жидкотей и газов.

В механике жидкости и газы с большой степенью точности рассматриваются как сплошные, непрерывное распределенные в занятой ими части проставранства. У газов плостность от давления зависит существенно. Из опыта установлено. что сжимаемостью жидкости и газа часто можно пренебречь и целесообразно пользоваться единым понятие - несжимаемостью жидкости - жидкости, с всюду одинаковой плотностью, которая не изменяется со течением времени.

Поместим в покоящуюся тонкую пластинку, в результате части жидкости, расположенные по разные стороны от пластины, будут действовать на каждый ее элемент ΔS с силами ΔF, которые будут равны по модулю и направленый перпендикулярно площадке ΔS независимо от ориентации площадки, в ином случае наличие касательных сил привело бы частицы жидкости в движение (рис.1)

Физическая величини, опеределяемая нормальной силой, действующей со стороны жидкости (или газа) на единицу площади, называется давлением p/ жидкости (или газа): p=ΔF/ΔS.

Единица давления - паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, которая равномерно распределена по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля: давление в любом месте покоящейся жидкости одинаково по воем направлениям, причем давление одинаково передается по всему объему, который занимает покоящаяся жидкость.

Исследуем влияние веса жидкости на распределение давления внутри неподвижной несжимаемой жидкости. При равновесии жидкости давление вдоль любой горизонтальной всегда одинаково, иначе не было бы равновесия. Значит свободная поверхность покоящейся жидкости всегда горизонтальна (притяжение жидкости стенками сосуда не учитываем). Если жидкость несжимаема, то плотность данной жидкости не зависит от давления. Тогда при поперечном сечении S столба жидкости, его высоте h и плотности ρ вес P=ρgSh, при этом давление на нижнее основание: p=P/S=ρgSh/S=ρgh, (1)

т. е. давление линейно изменяется с высотой. Давление ρgh называется гидростатическим давлением.

Согласно формуле (1), сила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует сила, определяемая законом Архимеда: на тело, погруженное в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости (газа): FА=ρgV, где ρ - плотность жидкости, V- объем погруженного в жидкость тела.

Рассмотрим абсолютно твердое тело, вращающееся относительно неподвижной оси. Мысленно разобьем это тело на бесконечно малые кусочки с бесконечно малыми размерами и массами m v т., т 3 , ..., находящиеся на расстояниях R v R 0 , R 3 ,... от оси. Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его малых частей:

- момент инерции твердого тела относительно данной оси 00,. Из сопоставления формул кинетической энергии поступательного и вращательного движений очевидно, что момент инерции во вращательном движении является аналогом массы в поступательном движении. Формула (4.14) удобна для расчета момента инерции систем, состоящих из отдельных материальных точек. Для расчета момента инерции сплошных тел, воспользовавшись определением интеграла, можно преобразовать ее к виду

Несложно заметить, что момент инерции зависит от выбора оси и меняется при ее параллельном переносе и повороте. Найдем значения моментов инерции для некоторых однородных тел.

Из формулы (4.14) очевидно, что момент инерции материальной точки равен

где т - масса точки; R - расстояние до оси вращения.

Несложно вычислить момент инерции и для полого тонкостенного цилиндра (или частного случая цилиндра с малой высотой - тонкого кольца) радиуса R относительно оси симметрии. Расстояние до оси вращения всех точек для такого тела одинаково, равно радиусу и может быть вынесено из- под знака суммы (4.14):

Рис. 4.5

Сплошной цилиндр (или частный случай цилиндра с малой высотой - диск) радиуса R для расчета момента инерции относительно оси симметрии требует вычисления интеграла (4.15). Заранее можно понять, что масса в этом случае в среднем сосредоточена несколько ближе к оси, чем в случае полого цилиндра, и формула будет похожа на (4.17), но в ней появится коэффициент, меньший единицы. Найдем этот коэффициент. Пусть сплошной цилиндр имеет плотность р и высоту А. Разобьем его на полые цилиндры (тонкие цилиндрические поверхности) толщиной dr (рис. 4.5 показывает проекцию, перпендикулярную оси симметрии). Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину: dV = 2nrhdr, масса: dm = 2nphrdr, а момент инерции в соответствии с формулой (4.17): dj =

= r 2 dm = 2лр/?г Wr. Полный момент инерции сплошного цилиндра получается интегрированием (суммированием) моментов инерции полых цилиндров:

Аналогично ищется момент инерции тонкого стержня длины L и массы т, если ось вращения перпендикулярна стержню и проходит через его середину. Разобьем такой

С учетом того что масса сплошного цилиндра связана с плотностью формулой т = nR 2 hp, имеем окончательно момент инерции сплошного цилиндра:

Рис. 4.6

стержень в соответствии с рис. 4.6 на кусочки толщиной dl. Масса такого кусочка равна dm = mdl/L, а момент инерции в соответствии с формулой (4.6): dj = l 2 dm = l 2 mdl/L. Полный момент инерции тонкого стержня получается интегрированием (суммированием) моментов инерции кусочков:

Взятие элементарного интеграла дает момент инерции тонкого стержня длины L и массы т

Рис. 4.7

Несколько сложней берется интеграл при поиске момента инерции однородного шара радиуса R и массы /77 относительно оси симметрии. Пусть сплошной шар имеет плотность р. Разобьем его в соответствии с рис. 4.7 на полые тонкие цилиндры толщиной dr, ось симметрии которых совпадает с осью вращения шара. Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину:

где высота цилиндра h найдена с использованием теоремы Пифагора:

Тогда несложно найти массу полого цилиндра:

а также момент инерции в соответствии с формулой (4.15):

Полный момент инерции сплошного шара получается интегрированием (суммированием) моментов инерции полых цилиндров:


С учетом того что масса сплошного шара связана с плотностью форму- 4 .

лой т = -npR A y имеем окончательно момент инерции относительно оси

симметрии однородного шара радиуса R массы т:

Кинетическая энергия вращения

Лекция 3. Динамика твердого тела

План лекции

3.1. Момент силы.

3.2. Основные уравнения вращательного движения. Момент инерции.

3.3. Кинетическая энергия вращения.

3.4. Момент импульса. Закон сохранения момента импульса.

3.5. Аналогия между поступательным и вращательным движением.

Момент силы

Рассмотрим движение твердого тела вокруг неподвижной оси. Пусть твердое тело имеет неподвижную ось вращения ОО (рис.3.1 ) и к нему приложена произвольная сила .

Рис. 3.1

Разложим силу на две составляющие силы , сила лежит в плоскости вращения, а сила – параллельна оси вращения. Затем силу разложим на две составляющие: – действующую вдоль радиус-вектора и – перпендикулярную ему.

Не любая сила, приложенная к телу, будет вращать его. Силы и создают давление на подшипники, но не вращают его.

Сила может вывести тело из равновесия, а может – нет в зависимости от того, в каком месте радиус-вектора она приложена. Поэтому вводится понятие момента силы относительно оси. Моментом силы относительно оси вращения называется векторное произведение радиуса-вектора на силу .

Вектор направлен по оси вращения и определяется правилом векторного произведения или правилом правого винта, или правилом буравчика.

Модуль момента силы

где α – угол между векторами и .

Из рис.3.1. видно, что .

r 0 кратчайшее расстояние от оси вращения до линии действия силы и называется плечом силы. Тогда момент силы можно записать

М = F r 0 . (3.3)

Из рис. 3.1.

где F – проекция вектора на направление, перпендикулярное вектору радиус-вектору . В этом случае момент силы равен

. (3.4)

Если на тело действует несколько сил, то результирующий момент силы равен векторной сумме моментов отдельных сил, но так как все моменты направлены вдоль оси, то их можно заменить алгебраической суммой. Момент будет считаться положительным, если он вращает тело по часовой стрелке и отрицательным, если против часовой стрелки. При равенстве нулю всех моментов сил (), тело будет находиться в равновесии.

Понятие момента силы можно продемонстрировать с помощью «капризной катушки». Катушку с нитками тянут за свободный конец нитки (рис. 3.2 ).

Рис. 3.2

В зависимости от направления силы натяжения нити катушка перекатывается в ту или иную сторону. Если тянуть под углом α , то момент силы относительно оси О (перпендикулярной к рисунку) вращает катушку против часовой стрелки и она откатывается назад. В случае натяжения под углом β вращающий момент направлен против часовой стрелки и катушка катится вперед.

Используя условие равновесия (), можно сконструировать простые механизмы, которые являются «преобразователями» силы, т.е. прикладывая меньшую силу можно поднимать и перемещать разного веса грузы. На этом принципе основаны рычаги, тачки, блоки разного рода, которые широко используются в строительстве. Для соблюдения условия равновесия в строительных подъемных кранах для компенсации момента силы, вызванного весом груза, всегда имеется система противовесов, создающая момент силы обратного знака.

3.2. Основное уравнение вращательного
движения. Момент инерции

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси ОО (рис.3.3 ). Разобьём мысленно это тело на элементы массами Δm 1 , Δm 2 , …, Δm n . При вращении эти элементы опишут окружности радиусами r 1 , r 2 , …, r n . На каждый элемент действуют соответственно силы F 1 , F 2 , …, F n . Вращение тела вокруг оси ОО происходит под действием полного момента сил М .

М = М 1 + М 2 + … +М n (3.4)

где М 1 = F 1 r 1, М 2 = F 2 r 2, …, M n = F n r n

Согласно II закону Ньютона, каждая сила F , действующая на элемент массой Dm , вызывает ускорение данного элемента a , т.е.

F i = Dm i a i (3.5)

Подставив в (3.4) соответствующие значения, получим

Рис. 3.3

Зная связь между линейным угловым ускорением ε () и что угловое ускорение для всех элементов одинаково, формула (3.6) будет иметь вид

М = (3.7)

=I (3.8)

I – момент инерции тела относительно неподвижной оси.

Тогда мы получим

М = I ε (3.9)

Или в векторном виде

(3.10)

Это уравнение является основным уравнением динамики вращательного движения. По форме оно сходно с уравнением II закона Ньютона. Из (3.10) момент инерции равен

Таким образом, моментом инерции данного тела называется отношение момента силы к вызываемому им угловому ускорении. Из (3.11) видно, что момент инерции является мерой инертности тела по отношению к вращательному движению. Момент инерции играет ту же роль, что и масса при поступательном движении. Единица измерения в СИ [I ] = кг·м 2 . Из формулы (3.7) следует, что момент инерции характеризует распределение масс частиц тела относительно оси вращения.

Итак, момент инерции элемента массы ∆m движущегося по окружности радиусом r равен

I = r 2 Dm (3.12)

I= (3.13)

В случае непрерывного распределения масс сумму можно заменить интегралом

I= ∫ r 2 dm (3.14)

где интегрирование производится по всей массе тела.

Отсюда видно, что момент инерции тела зависит от массы и её распределения относительно оси вращения. Это можно продемонстрировать на опыте (рис.3.4 ).

Рис. 3.4

Два круглых цилиндра, один полый (например, металлический), другой сплошной (деревянный) с одинаковыми длинами, радиусами и массами начинают одновременно скатываться. Полый цилиндр, обладающий большим моментом инерции, отстанет от сплошного.

Вычислить момент инерции можно, если известна масса m и ее распределение относительно оси вращения. Наиболее простой случай – кольцо, когда все элементы массы расположены одинаково от оси вращения (рис. 3.5 ):

I = (3.15)

Рис. 3.5

Приведем выражения для моментов инерции разных симметричных тел массой m .

1. Момент инерции кольца , полого тонкостенного цилиндра относительно оси вращения совпадающей с осью симметрии.

, (3.16)

r – радиус кольца или цилиндра

2. Для сплошного цилиндра и диска момент инерции относительно оси симметрии

(3.17)

3. Момент инерции шара относительно оси, проходящей через центр

(3.18)

r – радиус шара



4. Момент инерции тонкого стержня длинной l относительно оси, перпендикулярной стержню и проходящей через его середину

(3.19)

l – длина стержня.

Если ось вращения не проходит через центр масс, то момент инерции тела относительно этой оси определяется теоремой Штейнера.

(3.20)

Согласно этой теореме, момент инерции относительно произвольной оси О’O’ ( ) равен моменту инерции относительно параллельной оси, проходящей через центр масс тела ( ) плюс произведение массы тела на квадрат расстояния а между осями (рис. 3.6 ).

Рис. 3.6

Кинетическая энергия вращения

Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси ОО с угловой скоростью ω (рис. 3.7 ). Разобьем твердое тело на n элементарных масс ∆m i . Каждый элемент массы вращается по окружности радиуса r i с линейной скоростью (). Кинетическая энергия складывается из кинетических энергий отдельных элементов.

(3.21)

Рис. 3.7

Вспомним по (3.13), что – момент инерции относительно оси ОО.

Таким образом, кинетическая энергия вращающегося тела

Е к = (3.22)

Мы рассмотрели кинетическую энергию вращения вокруг неподвижной оси. Если тело участвует в двух движениях: в поступательном и вращательном движениях, то кинетическая энергия тела складывается из кинетической энергии поступательного движения и кинетической энергии вращения.

Например, шар массой m катится; центр масс шара движется поступательно со скоростью u (рис. 3.8 ).

Рис. 3.8

Полная кинетическая энергия шара будет равна

(3.23)

3.4. Момент импульса. Закон сохранения
момента импульса

Физическая величина равная произведению момента инерции I на угловую скорость ω , называется моментом импульса (моментом количества движения) L относительно оси вращения.

– момент импульса величина векторная и по направлению совпадает с направлением угловой скорости .

Продифференцировав уравнение (3.24) по времени, получим

где, М – суммарный момент внешних сил. В изолированной системе момент внешних сил отсутствует (М =0) и

Начнем с рассмотрения вращения тела вокруг неоодвижной оси которую мы назовем осью z (рис. 41.1). Линейная скорость элементарной массы равна где - расстояние массы от оси . Следовательно для кинетической энергии элементарной массы получается выражение

Кинетическая энергия тела слагается из кинетических энергий его частей:

Сумма в правой части этого соотношения представляет собой момент инерции тела 1 относительно оси вращения. образом, кинетическая энергия тела, вращающегося вокруг неподвижной оси равна

Пусть на массу действуют внутренняя сила и внешняя сила (см. рис. 41.1). Согласно (20.5) эти силы совершат за время работу

Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей (см. (2.34)), получим:

где N - момент внутренней силы относительно точки О, N - аналогичный момент внешней силы.

Просуммировав выражение (41.2) по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt:

Сумма моментов внутренних сил равна нулю (см. (29.12)). Следовательно, обозначив суммарный момент внешних сил через N придем к выражению

(мы воспользовались формулой (2.21)).

Наконец, приняв во внимание, что есть угол на который поворачивается тело за время получим:

Знак работы зависит от знака т. е. от знака проекции вектора N на направление вектора

Итак, при вращении тела внутренние силы работы не совершают, работа же внешних сил определяется формулой (41.4).

К формуле (41.4) можно прийти, воспользовавшись тем, что работа, совершаемая всеми приложенными к телу силами, идет на приращение его кинетической энергии (см. (19.11)). Взяв дифференциал от обеих частей равенства (41.1), придем к соотношению

Согласно уравнению (38.8) так что, заменив через придем к формуле (41.4).

Таблица 41.1

В табл. 41.1 сопоставлены формулы механики вращательного движений с аналогичными формулами механики поступательного движения (механики точки). Из этого сопоставления легко заключить, что во всех случаях роль массы играет момент инерции, роль силы момент силы, роль импульса - момент импульса и т. д.

Формулу. (41.1) мы получили для случая, когда тело вращается вокруг неподвижной фиксированной в теле оси. Теперь допустим что тело вращается произвольным образом относительно неподвижной точки, совпадающей с его центром масс.

Свяжем жестко с телом декартову систему координат, начало которой поместим в центр масс тела. Скорость i-й элементарный массы равна Следовательно, для кинетической энергии тела, можно написать выражение

где - угол между векторами Заменив а через и учтя, что получим:

Распишем скалярные произведения через проекции векторов на оси связанной с телом координатной системы:

Наконец, объединив слагаемые с одинаковыми произведениями компонент угловой скорости и вынеся эти произведения за знаки сумм, получим: так что формула (41.7) принимает вид (ср. с (41.1)). При вращении произвольного тела вокруг одной из главных осей инерции, скажем оси и формула (41.7) переходит в (41.10.

Таким, образом. кинетическая энергия вращающегося тела равна половине произведения момента инерции на квадрат угловой скорости в трех случаях: 1) для тела вращающегося вокруг неподвижной оси; 2) для тела вращающегося вокруг одной из главных осей инерции; 3) для шарового волчка. В остальных случаях кинетическая энергия определяется белее сложными формулами (41.5) или (41.7).