Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Рецепторы организма. Рецепторы и их классификация

Рецепторы организма. Рецепторы и их классификация

Статья по анатомии и физиологии человека

Рецепторы и их роль в организме человека

Воробьев Антон Сергеевич

Рецептор (от лат. recipere - получать) - чувствительное нервное окончание или специализированная клетка, преобразующее воспринимаемое раздражение в нервные импульсы.
Рецептор гораздо более восприимчив к внешним воздействиям, чем другие органы и нервные волокна. Чувствительность этого органа особенно высока и обратно пропорциональна порогу. То есть если говорят, что порог раздражения низкий, это значит, что чувствительность рецептора высокая. Рецептор - это специализированный аппарат.
Каждый рецептор предназначен для восприятия одного из видов раздражения.
Все рецепторы характеризуются наличием специфического участка мембраны, содержащего рецепторный белок, обусловливающий процессы рецепции.
Основной характеристикой рецепторного аппарата организма является его приспособленность к восприятию раздражений, повышенная чувствительность к ним и специализация к определенным видам воздействия.
Существуют несколько классификаций рецепторов:
  • По положению в организме
    • Экстерорецепторы (экстероцепторы) — расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)
    • Интерорецепторы (интероцепторы) — расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)
      • Проприорецепторы (проприоцепторы) — рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов
  • По способности воспринимать разные стимулы
    • Мономодальные — реагирующие только на один тип раздражителей (например, фоторецепторы — на свет)
    • Полимодальные — реагирующие на несколько типов раздражителей (например, многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы)
  • Поадекватному раздражителю :
    • Хеморецепторы — воспринимают воздействие растворенных или летучих химических веществ
    • Осморецепторы — воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды)
    • Механорецепторы — воспринима ют механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т. п.)
    • Фоторецепторы — воспринимают видимый и ультрафиолетовый свет
    • Терморецепторы — воспринимают понижение (холодовые) или повышение (тепловые) стимулы
    • Болевые рецепторы , стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно. В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов. Однако уникальная особенность ноцицепторов, которая не позволяет отнести их, например, к «высокопороговым терморецепторам», состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов.
    • Электрорецепторы — воспринимают изменения электрического поля
    • Магнитные рецепторы — воспринимают изменения магнитного поля
У человека имеются первые шесть типов рецепторов. На хеморецепции основаны вкус и обоняние, на механорецепции — осязание, слух и равновесие, а также ощущения положения тела в пространстве, на фоторецепции — зрение. Терморецепторы есть в коже и некоторых внутренних органах. Большая часть интерорецепторов запускает непроизвольные, и в большинстве случаев неосознаваемые, вегетативные рефлексы. Так, осморецепторы включены в регуляцию деятельности почек, хеморецепторы, воспринимающие pH, концентрации углекислого газа и кислорода в крови, включены в регуляцию дыхания и т. д.

Иногда предлагается выделять группу электромагнитных рецепторов, в которую включают фото-, электро- и магниторецепторы. Магниторецепторы точно не идентифицированы ни у одной группы животных, хотя предположительно ими служат некоторые клетки сетчатки птиц, а возможно, и ряд других клеток.
Рецепторы кожи

  • Болевые рецепторы.
  • Тельца Пачини — капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются вподкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент началавоздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то естьпредставляют грубую чувствительность.
  • Тельца Мейснера — рецепторы давления, расположенные в дерме . Представляют собой слоистую структурус нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малымирецептивными полями, то есть представляют тонкую чувствительность.
  • Диски Меркеля — некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями.
  • Рецепторы волосяных луковиц — реагируют на отклонение волоса.
  • Окончания Руффини — рецепторы растяжения. Являются медленноадаптирующимися, обладают большимирецептивными полями.
Рецепторы мышц и сухожилий
  • Мышечные веретена — рецепторы растяжения мышц, бывают двух типов:
    • с ядерной сумкой
    • с ядерной цепочкой
  • Сухожильный орган Гольджи — рецепторы сокращения мышц. При сокращении мышцы сухожилиерастягивается и его волокна пережимают рецепторное окончание, активируя его.
Рецепторы связок
В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа — инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 — тельцам Паччини.
Рецепторы сетчатки глаза

Сетчатка содержит палочковые (палочки ) и колбочковые (колбочки ) фоточувствительные клетки, которыесодержат светочуствительные пигменты . Палочки чуствительны к очень слабому свету, это длинные и тонкие клетки , сориентированные по оси прохождения света. Все палочки содержат один и тот же светочуствительный пигмент. Колбочки требуют намного более яркого освещения, это короткиеконусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свойсветочуствительный пигмент — это и есть основа цветового зрения .
Под воздействием света в рецепторах происходит выцветание — молекула зрительного пигмента поглощает
фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны ). Практическиу всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединенанебольшая молекула, близкая к витамину A . Эта молекула и представляет собой химическитрансформируемую светом часть. Белковая часть выцвевшей молекулы зрительного пигмента активируетмолекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата , участвующих в открытии пор мембраны для ионов натрия , в результате чего поток ионов прекращается — мембрана гиперполяризуется.
Чуствительность палочек такова, что
адаптировавшийся к полной темноте человек способен увидеть вспышкусвета такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки неспособны реагировать на изменения освещённости, когда свет настолько ярок, что все натриевые поры ужезакрыты.
Литература:
  • Дэвид Хьюбел — «Глаз, мозг, зрение» перевод с англ. канд. биол. наук О. В. Левашова, канд. биол. наук Г. А. Шараева под ред. чл.-корр. АН СССР А. Л. Бызова, Москва «Мир», 1990
  • http://anatomus.ru/articles/rol-retseptorov.html

РЕЦЕПТОРЫ (лат. receptor принимающий) - специализированные чувствительные образования, приспособленные для восприятия адекватных для организма стимулов (раздражителей).

В научной литературе используют также понятие «сенсорные рецепторы» для обозначения Р., обеспечивающих чувствительность (см.) организма. Тем самым разграничиваются сферы применения термина «рецепторы» (в физиологии) и термина «биохимические рецепторы» (используемого в фармакологии, биохимии, иммунологии и др. для обозначения надмолекулярных структур клетки, обеспечивающих взаимодействие с хим. веществами - медиаторами, гормонами и др., и соответствующие реакции клетки).

Сенсорные рецепторы

В относительно просто организованных чувствительных структурах (напр., во внутренних органах, в структурах опорно-двигательного аппарата, в коже) понятие «рецепторы» совпадает с понятиями «рецепторные приборы», «сенсорные органы». В более сложных чувствительных образованиях (напр., в органах слуха и зрения, вестибулярном лабиринте и др.) Р. являются лишь частью сенсорного органа (см. Вестибулярный анализатор , Вкус , Зрение , Осязание , Слух). В Р. энергия раздражителя трансформируется в специфическую активность нервной системы, в сигналы, несущие по афферентным проводникам к нервным центрам информацию о характеристиках действующего агента. В ходе эволюции Р. усложнялись и специализировались, т. к. чем быстрее и полнее организм способен получить информацию о состоянии и об изменениях окружающей и внутренней среды, тем выше шансы организма выжить в непрерывной борьбе за существование.

У высокоорганизованных животных существует большое разнообразие Р., позволяющих им очень точно воспринимать раздражители самых разных видов (модальностей): механические, химические, температурные, световые, электрические. В зависимости от этого различают механорецепторы (см.), хеморецепторы (см.), терморецепторы (см.), фоторецепторы (см.); иногда говорят о наличии ноцицепторов, т. е. рецепторов, воспринимающих болевые раздражители (см. Боль).

Нек-рые рецепторы приспособлены для восприятия одного вида раздражения (мономодальные Р.), другие - для восприятия нескольких видов раздражителей (полимодальные Р.). Исторически сохранилось деление Р. на так наз. дистантные Р., служащие для получения информации на нек-ром расстоянии от источника раздражения, и контактные Р., воспринимающие стимул при непосредственном соприкосновении с ним. Основная масса Р., особенно высокоспециализированных, воспринимает раздражители из окружающих сред. Это так наз. экстероцепторы (см. Экстероцепция). Важную роль играют Р., сигнализирующие о раздражителях внутренней среды, т. е. интероцепторы (см. Интероцепция). Среди них часто выделяют Р. опорно-двигательного аппарата - проприоцепторы (см.).

В зависимости от реакции на длительно действующее стационарное воздействие Р. делят на быстро и медленно адаптирующиеся (фазные и тонические Р.). По структурным и функциональным особенностям Р. подразделяются на первично чувствующие и вторично чувствующие Р. Восприятие стимула в первично чувствующих Р. осуществляется непосредственно (т. е. первично) окончаниями сенсорного нейрона (см. Нервные окончания). У вторично чувствующих Р. между действующим стимулом и сенсорным нейроном располагается специализированная клетка, из к-рой при раздражении выделяется медиатор (см.), действующий уже непосредственно на окончания сенсорного нейрона. Таким образом, у Р. этого типа внешнее раздражение на сенсорный нейрон опосредованно, вторично. К первично чувствующим Р. у позвоночных животных относятся, напр., нервно-мышечные веретена, нервно-сухожильные веретена, а к вторично чувствующим - рецепторы органов слуха, зрения, вкуса, вестибулярного лабиринта и др.

В Р. выделяют три основные части: вспомогательные структуры, напр, капсула у инкапсулированных тканевых Р. (типа телец Пачини, Мейсснера и др.), звукопроводящие структуры органа слуха и др., собственно рецептирующие элементы, содержащие воспринимающий субстрат, и систему генерации локальных электрических потенциалов (так наз. рецепторные, или генераторные, потенциалы). У первично чувствующих Р. ответы возникают в окончании сенсорного нейрона, а у вторично чувствующих Р.- в рецептирующей клетке. Если локальный электрический потенциал оказывает деполяризующее действие на электровозбудимые структуры окончаний сенсорного нейрона, то происходит генерация импульсов (см. Нервный импульс), несущих в ц. н. с. информацию о событиях, протекающих в Р.; отсюда и термин «генераторный потенциал».

Между силой адекватного для Р. раздражения и частотой импульсации (в среднем диапазоне нагрузок) существует логарифмическая зависимость, что соответствует закону Вебера - Фехнера (см. Ощущение), Амплитуда рецепторного потенциала, несмотря на постоянство раздражителя, может флюктуировать. Этот факт, а также флюктуация возбудимости структур, генерирующих импульсы, определяют общее колебание возбудимости Р. во времени, что лежит в основе так наз. функциональной мобильности Р.

Одной из важнейших характеристик Р. является их высокая чувствительность к действию адекватного раздражителя. Чувствительность Р. оценивается величиной абсолютного порога, т. е. минимальной силой раздражения, способной вызвать возбуждение Р. (см. Возбуждение). Абсолютные пороги высокодифференцированных Р. (в органах зрения, слуха, обоняния) могут быть крайне низкими, приближаясь к теоретически предельным значениям.

Деятельность Р. находится под нейрогуморальным контролем. Гуморальные факторы способны в известной мере менять возбудимость Р. Эфферентные нервные влияния могут изменять пороги реакции, вызывать как возбуждение, так и торможение Р. У позвоночных животных эфферентные влияния на высокочувствительные вторично чувствующие Р. носят преимущественно угнетающий характер, а на менее чувствительные первично чувствующие - в основном облегчающий (или возбуждающий) характер.

Патология Р. разнообразна. Причиной могут служить какие-либо нарушения во вспомогательных структурах Р. (напр., в светопроводящих структурах органов зрения, звукопроводящих структурах слуха), в собственно сенсорных элементах (напр., при атрофии обонятельного эпителия, при нарушениях биохим. превращений зрительных пигментов и др.) и, наконец, в афферентных нервных проводниках (напр., при травмах и заболеваниях нервов). Если патол. изменения вспомогательных структур Р. могут подвергаться лечению (напр., при катарактах, отосклерозах), то повреждение собственно рецептирующих элементов (фоторецепторов, волосковых рецепторов и т. д.) обычно ведет к необратимым изменениям в деятельности сенсорных органов.

Методы исследования Р. различны; применяют многие морфологические (свето- и электронно-микроскопические), физиологические (различные микроэлектрофизиологические, психофизиологические и др.), фармакологические, биохимические, биофизические, математические и другие методы.

Клеточные рецепторы

В многоклеточном организме передача информации между клетками, происходящая с участием гормонов, нейротрансмиттеров (медиаторов), нейропептидов и других биологически активных веществ, включает этап взаимодействия молекул этих веществ (их называют также лигандами) с соответствующими надмолекулярными структурами, или клеточными рецепторами. Они могут располагаться как внутри клетки (напр., клеточные Р. к стероидным гормонам, легко проникающим внутрь клетки благодаря их растворимости в липидах клеточной мембраны), так и на поверхности клеточной мембраны (клеточные Р. к белкам, пептидам, нейротрансмиттерам). Как внутриклеточные, так и мембранные клеточные Р. содержат центр связывания, обеспечивающий специфическое связывание лиганда с клеточными Р. После связывания, напр., молекулы стероидного гормона с цитоплазматическим Р. и образования комплекса гормон - клеточный Р. этот комплекс проникает внутрь клеточного ядра, где связывается с соответствующим акцептором, вслед за чем молекула гормона отделяется от комплекса и выходит в цитоплазму, при этом одновременно активируется генетический аппарат клетки (см.). Конечным итогом этой активации является резкое усиление синтеза ряда специфических и неспецифических белков клетки, что представляет собой ответ клетки-мишени на действие гормона.

Процессы, происходящие при связывании молекулы лиганда с клеточным Р., локализованным на клеточной мембране (см. Мембраны биологические), состоят из ряда этапов, протекающих с большой скоростью. Происходящее при этом изменение свойств фосфолипидного матрикса, окружающего клеточный Р., обеспечивает передачу сигнала от центра связывания лиганда (через ряд промежуточных звеньев) на аденилат-циклазный центр и его активацию. Циклическая АМФ (см. Аденозинфосфорные кислоты) является своеобразным вторым внутриклеточным переносчиком информации, определяющим ответ клетки на действие лиганда. Т. о., происходит активация соответствующих протеинкиназ, изменение проницаемости клеточной мембраны для ряда ионов, усиление экспрессии генетической информации. Важным открытием явилось обнаружение в ц. н. с. клеточных Р. к ряду нейрональных пептидов, напр, к группам пептидов, названных эндорфинами и энкефалинами, а также клеточных Р. ко многим психотропным лекарственным препаратам (имипрамину, галоперидолу, диазепаму и др.). Взаимодействие указанных выше лигандов с клеточными Р. изменяет способность нервных клеток отвечать на действие нейро-трансмиттеров, т. е. оказывает на их активность модулирующее действие. Напр., связывание препаратов бензодиазепинового ряда с бензодиазе-пиновыми клеточными Р. усиливает ответ ГАМК-ергических нейронов на действие гамма-аминомасляной к-ты (ГАМК), влияя в то же время на связывание ГАМК соответствующими клеточными Р. В связи с обнаружением в ц. н. с. эндогенных лигандов, конкурирующих с морфином за места связывания и обладающих морфиноподобным действием, проводится поиск эндогенных соединений типа эндогенного диазепама, эндогенного галоперидола и др., что может иметь в случае их обнаружения большое значение для клин, практики.

Нарушения механизмов рецепции играют важную роль в развитии ряда заболеваний человека, напр, нек-рых видов сахарного диабета, гиперхоли-стеринемии и др. Наряду с рассмотренными выше видами Р. на поверхности В- и Т-лимфоцитов выявлены мембранные клеточные Р., играющие важную роль в работе иммунной системы, а также клеточные Р. к ряду вирусов.

Библиография: Глебов Р. И. и Крыжановский Г. Н. Функциональная биохимия синапсов, М., 1978; Гранит Р. Электрофизиологическое исследование рецепции, пер. с англ., М., 1957; Розен В. Б. и Смирнов А. Н. Рецепторы и стероидные гормоны, М., 1981, библиогр.; Тамар Г. Основы сенсорной физиологии, пер. с англ., М., 1976; Физиология сенсорных систем, под ред. А. С. Батуева, с. 34, Л., 1976; Cell membrane receptors for drugs and hormones, a multidisciplinary approach, ed. by R. W. Straub a. L. Bolis, N. Y., 1978; Cell! membrane receptors for viruses, antigens, and antibodies, polypeptide hormones, and small molecules, ed. by R. F. Beers a. E. G. Bassett, N. Y., 1976; The receptors, a comprehensive treatise, ed. by R. D. O’Brien, v. 1, N. Y.- L., 1979.

О. Б. Ильинский; P. P. Лидеман (клеточные рецепторы).

Рецепторы (лат. receptor - принимающий, от recipio - принимаю, получаю)

специальные чувствительные образования, воспринимающие и преобразующие раздражения из внешней или внутренней среды организма и передающие информацию о действующем агенте в нервную систему (см. Анализаторы). Р. характеризуются многообразием в структурном и функциональном отношениях. Они могут быть представлены свободными окончаниями нервных волокон, окончаниями, покрытыми особой капсулой, а также специализированными клетками в сложно организованных образованиях, таких, как Сетчатка глаза, Кортиев орган и др., состоящих из множества Р.

Р. делят на внешние, или экстероцепторы, и внутренние, или Интерорецепторы . Экстероцепторы расположены на внешней поверхности тела животного или человека и воспринимают раздражения из внешнего мира (световые, звуковые, термические и др.). Интероцепторы находятся в различных тканях и внутренних органах (сердце, лимфатические и кровеносные сосуды, лёгкие и т.д.); воспринимают раздражители, сигнализирующие о состоянии внутренних органов (висцероцепторы), а также о положении тела или его частей в пространстве (вестибулоцепторы). Разновидность интероцепторов - Проприорецепторы , расположенные в мышцах, сухожилиях и связках и воспринимающие статическое состояние мышц и их динамику. В зависимости от природы воспринимаемого адекватного раздражителя различают Механорецепторы , Фоторецепторы , Хеморецепторы , Терморецепторы и др. У дельфинов, летучих мышей и ночных бабочек обнаружены Р., чувствительные к ультразвуку, у некоторых рыб - к электрическим полям. Менее изучен вопрос о существовании у некоторых птиц и рыб Р., чувствительных к магнитным полям (см. Магнитобиология). Мономодальные Р. воспринимают раздражения только одного рода (механическое, световое или химическое); среди них - Р., различные по уровню чувствительности и отношению к раздражающему стимулу. Так, фоторецепторы позвоночных подразделяются на более чувствительные палочковые клетки, функционирующие как Р. сумеречного зрения, и менее чувствительные колбочковые клетки, обеспечивающие у человека и ряда животных дневное светоощущение и Цветовое зрение ; механорецепторы кожи - на более чувствительные фазные Р., реагирующие только на динамическую фазу деформации, и статические, реагирующие и на постоянную деформацию, и т.д. В результате такой специализации Р. выделяются наиболее значительные свойства стимула и осуществляется тонкий анализ воспринимаемых раздражений. Полимодальные Р. реагируют на раздражения разного качества, например химическое и механическое, механическое и температурное. При этом закодированная в молекулах специфическая информация передаётся в центральную нервную систему по одним и тем же нервным волокнам в виде нервных импульсов, подвергаясь на своём пути неоднократному энергетическому усилению. Исторически сохранилось деление Р. на дистантные (зрительные, слуховые, обонятельные), воспринимающие сигналы от источника раздражения, находящегося на некотором расстоянии от организма, и контактные - при непосредственном соприкосновении с источником раздражения. Различают также Р. первичные (первичночувствующие) и вторичные (вторичночувствующие). У первичных Р. субстрат, воспринимающий внешнее воздействие, заложен в самом сенсорном Нейрон е, который непосредственно (первично) возбуждается раздражителем. У вторичных Р. между действующим агентом и сенсорным нейроном располагаются дополнительные, специализированные (рецептирующие) клетки, в которых преобразуется (трансформируется) в нервные импульсы энергия внешних раздражений.

Все Р. характеризуются рядом общих свойств. Они специализированы для рецепции (См. Рецепция) определённых, свойственных им раздражений, называемыми адекватными. При действии раздражений в Р. возникает изменение разности биоэлектрических потенциалов (См. Биоэлектрические потенциалы) на клеточной мембране, так называемый рецепторный потенциал, который либо непосредственно генерирует ритмические импульсы в рецепторной клетке, либо приводит к их возникновению в другом нейроне, связанном с Р. посредством синапса (См. Синапсы). Частота импульсов возрастает с увеличением интенсивности раздражения. При продолжительном действии раздражителя снижается частота импульсов в волокне, отходящем от Р.; подобное явление уменьшения активности Р. называется адаптацией физиологической (См. Адаптация физиологическая). Для различных Р. время такой адаптации неодинаково. Р. отличаются высокой чувствительностью к адекватным раздражителям, которая измеряется величиной абсолютного порога, или минимальной интенсивностью раздражения, способного привести Р. в состояние возбуждения. Так, например, 5-7 квантов света, падающего на Р. глаза, вызывают световое ощущение, а для возбуждения отдельного фоторецептора достаточно 1 кванта. Р. можно возбудить и неадекватным раздражителем. Воздействуя, например, на глаз или ухо электрическим током, можно вызвать ощущение света или звука. Ощущения связаны со специфической чувствительностью Р., возникшей в ходе эволюции органической природы. Образное восприятие мира связано преимущественно с информацией, идущей с экстероцепторов. Информация с интероцепторов не приводит к возникновению чётких ощущений (см. Мышечное чувство). Функции различных Р. взаимосвязаны. Взаимодействие вестибулярных Р., а также Р. кожи и проприоцепторов со зрительными осуществляется центральной нервной системой и лежит в основе восприятия величины и формы предметов, их положения в пространстве. Р. могут взаимодействовать между собой и без участия центральной нервной системы, т. е. вследствие непосредственной связи друг с другом. Такое взаимодействие, установленное на зрительных, тактильных и других Р., имеет важное значение для механизма пространственно-временного контраста. Деятельность Р. регулируется центральной нервной системой, осуществляющей их настройку в зависимости от потребностей организма. Эти влияния, механизм которых изучен недостаточно, осуществляются посредством специальных эфферентных волокон, подходящих к некоторым рецепторным структурам.

Лит.: Гранит Р., Электрофизиологическое исследование рецепции, пер. с англ., М., 1957; Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967; Винников Я. А., Цитологические и молекулярные основы рецепции. Эволюция органов чувств, Л., 1971; Физиология человека, под ред. Е. Б. Бабского, М., 1972, с. 436-98; Физиология сенсорных систем, ч. 1-2, Л., 1971-72 (Руководство по физиологии); Handbook of sensory physiology, v. 1, pt 1. v. 4, pt 1-2, В. - HdIb. - N. Y., 1971-72; Melzack R., The puzzle of pain, Harmondswarth, 1973. см. также лит. при ст. Интерорецепция .

А. И. Есаков.

Рецепторы фармакологические (РФ), рецепторы клеточные, рецепторы тканевые, расположены на мембране эффекторной клетки; воспринимают регуляторные и пусковые сигналы нервной и эндокринной систем, действие многих фармакологических препаратов, избирательно влияющих на эту клетку, и трансформируют указанные воздействия в её специфическую биохимическую или физиологическую реакцию. Наиболее исследованы РФ, посредством которых осуществляется действие нервной системы. Влияние парасимпатического и двигательного отделов нервной системы (медиатор ацетилхолин) передают два типа РФ: Н-холиноцепторы передают нервные импульсы на скелетные мышцы и в нервных ганглиях с нейрона на нейрон; М-холино-цепторы участвуют в регуляции работы сердца и тонуса гладких мышц. Влияние симпатической нервной системы (медиатор норадреналин) и гормона мозгового вещества надпочечника (адреналина) передаётся альфа- и бета-адреноцепторами. Возбуждение альфа-адреноцепторов вызывает сужение сосудов, подъём артериального давления, расширение зрачка, сокращение ряда гладких мышц и т.д.; возбуждение бета-адреноцепторов - увеличение сахара в крови, активацию ферментов, расширение сосудов, расслабление гладких мышц, усиление частоты и силы сердечных сокращений и т.д. Т. о., функциональное влияние осуществляется через оба типа адреноцепторов, а метаболическое - преимущественно через бета-адреноцепторы. Обнаружены также РФ, чувствительные к дофамину, серотонину, гистамину, полипептидам и другим эндогенным биологически активным веществам и к фармакологическим антагонистам некоторых из этих веществ. Терапевтический эффект ряда фармакологических препаратов обусловлен их специфическим действием на специфические Р.

Лит.: Турпаев Т. М., Медиаторная функция ацетилхолина и природа холинорецептора, М., 1962; Манухин Б. Н., Физиология адренорецепторов, М., 1968; Михельсон М. Я., Зеймаль Э. В., Ацетилхолин, Л., 1970.

Б. Н. Манухин.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Рецепторы" в других словарях:

    Рецепторы, активирующие пролиферацию пероксисом Рецепторы, активирующие пролиферацию пероксисом PPAR англ. Peroxisome proliferator activated receptors Рецепторы, активирующие пролиферацию пероксисом (англ. Peroxisome proliferator activated rec … Википедия

    - (от лат. receptor принимающий) нервные образования, преобразующие химико физические воздействия из внешней или внутренней среды организма в нервные импульсы. По месту своего расположения и по выполняемым функциям рецепторы могут быть… … Психологический словарь

    РЕЦЕПТОРЫ - (лат. receptor), спецыальные чувствительные образования, способные воспринимать раздражения из внешней (экстерорецепторы) и внутренней (интерорецепторы) среды организма и преобразовывать их в нервное возбуждение, передаваемое в центральную… … Экологический словарь

    рецепторы - Этимология. Происходит от лат. receptor принимающий. Категория. Нервные образования, преобразующие химико физические воздействия из внешней или внутренней среды организма в нервные импульсы. Виды. По месту расположения и по выполняемым функциям… … Большая психологическая энциклопедия

    Современная энциклопедия

    - (от лат. receptor принимающий) в физиологии окончания чувствительных нервных волокон или специализированные клетки (сетчатки глаза, внутреннего уха и др.), преобразующие раздражения, воспринимаемые извне (экстероцепторы) или из внутренней среды… … Большой Энциклопедический словарь

    РЕЦЕПТОРЫ, мн., ед. рецептор, а, муж. (спец.). В организме животного и человека: специальные чувствительные образования, воспринимающие внешние и внутренние раздражения и преобразующие их в нервные возбуждения, к рые передаются в центральную… … Толковый словарь Ожегова

    - (лат. receptor принимающий, от recipio принимаю, получаю), спец. чувствит. образования у животных и человека, воспринимающие и преобразующие раздражения из внеш. и внутр. среды в специфич. активность нервной системы. Могут быть представлены как… … Биологический энциклопедический словарь

    Специфические распознающие участки поверхности клеток, имеющие определенную пространственную конфигурацию, хим. состав и физ. св ва. Служат для связи клеток с Ат, Аг, С, лимфо и монокинами, митогенами, интерфероном, гистамином, токсинами,… … Словарь микробиологии

    РЕЦЕПТОРЫ - РЕЦЕПТОРЫ. Специальные концевые образования нервных волокон, воспринимающие раздражение и преобразующие энергию действующих на них раздражителей в процессе нервного возбуждения, которое потом по чувствительным нервам передается в вышележащие… … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    Рецепторы - (от латинского receptor принимающий) (физиологический), окончания чувствительных нервных волокон или специализированные клетки (сетчатки глаза, внутреннего уха и др.), преобразующие раздражения, которые воспринимаются извне или из внутренней… … Иллюстрированный энциклопедический словарь

Рецептор (от латинского слова - принимающий) в биологии имеет два значения. В первом значении рецепторами называют чувствительные нервные окончания или специализированные клетки, воспринимающие раздражения из внешней или внутренней среды и преобразующие их в нервное возбуждение, передаваемое в виде потока нервных импульсов в центральную нервную систему организма.

Различают первичные рецепторы, представляющие собой простые нервные окончания отростков центростремительных нервных клеток - нейронов, и вторичные рецепторы, имеющие специализированные клетки для восприятия определенного раздражения. К первичным рецепторам относятся, например, нервные окончания в коже, воспринимающие осязательные и болевые раздражения, а ко вторичным - обонятельные клетки носовой полости, колбочки и палочки сетчатки глаза, воспринимающие свет. Палочки - это видоизменившиеся эпителиальные клетки, содержащие вещества, способные распадаться под действием света. Образующиеся продукты распада вызывают изменения активности этих клеток, которые регистрируются и обрабатываются нейронами сетчатки. В зависимости от степени возбуждения колбочек и палочек нейроны усиливают или ослабляют поток нервных импульсов, посылаемых в мозг. По аналогичному принципу работают и другие вторичные рецепторы, воспринимающие звуковые колебания, давление на кожу, положение тела в пространстве.

Различают экстрорецепторы (экстероцепторы), воспринимающие внешние раздражения: температуру, прикосновение, свет, звуки, вкус, запах и др.; интрорецепторы (интероцепторы), регистрирующие состояние внутренней среды организма: химический состав крови, ее давление на стенки сосуда, работу внутренних органов; проприорецепторы (проприоцепторы), воспринимающие натяжение сухожилий, изменение длины мышечных волокон, связочного аппарата. Рецепторы, воспринимающие механические воздействия, называют механорецепторами, химические раздражения - хеморецепторами, давление - барорецепторами.

Во втором значении этого термина рецепторами называют участки мембраны клеток, чувствительные к определенным веществам и передающие информацию о таком сигнале внутрь клетки. Фактически мембранные рецепторы - это особые молекулы белка, способные опознавать молекулы определенных соединений - белков, пептидов, низкомолекулярных гормонов, факторов роста и других веществ. В большинстве случаев соединение рецептора с сигнальной молекулой активирует специальный фермент. Рецепторы устроены так, что опознаваемые ими молекулы или части этих молекул способны входить в рецепторы, как ключ в замочную скважину. При этом состояние и деятельность клетки меняются. Например, рецепторы мышечных волокон, обеспечивающие автоматику сердечной деятельности, чувствительны к гормонам - адреналину и ацетилхолину. Первый гормон усиливает деятельность сердца, второй - ее тормозит.

Мембранные рецепторы функционируют также в местах соединения двух нервных клеток - синапсах. Нервное окончание одной клетки выделяет специальное вещество - медиатор (например, ацетилхолин). Рецепторы на поверхности другой клетки воспринимают этот сигнал и возбуждают вторую клетку.

Рецепторы

Две тысячи лет назад Аристотель написал, что у человека существуют пять чувств: зрение, слух, осязание, обоняние и вкус. За два тысячелетия ученые неоднократно открывали органы новых «шестых чувств», например вестибулярный аппарат или температурные рецепторы. Эти органы чувств часто называют «ворота в мир»: они позволяют животным ориентироваться во внешней среде и воспринимать сигналы себе подобных. Однако не меньшее значение в жизни животных играет и «взгляд внутрь себя»; ученые открыли разнообразные рецепторы, измеряющие кровяное давление, содержание сахара и углекислого газа в крови, осмотическое давление крови, степень растяжения мышц и т. д. Эти внутренние рецепторы, сигналы которых, как правило, не доходят до сознания, позволяют нашей нервной системе управлять разнообразными процессами внутри организма.

Из сказанного ясно, что классификация Аристотеля явно устарела и сегодня число разных «чувств» оказалось бы весьма велико, особенно если рассматривать органы чувств разнообразных организмов, населяющих Землю.

Вместе с тем, по мере изучения этого разнообразия обнаружилось, что в основе работы всех органов чувств лежит один принцип. Внешнее воздействие принимается специальными клетками - рецепторами и меняет МП этих клеток. Этот электрический сигнал называют рецепторным потенциалом. А дальше рецепторный потенциал управляет выделением медиатора из рецепторной клетки, либо частотой ее импульсации. Таким образом, рецептор - это преобразователь внешних воздействий в электрические сигналы, как об этом гениально догадался Вольт.

Рецепторы передают сигналы в нервную систему, где происходит их дальнейшая обработка.

В старые времена на производстве приборы располагались непосредственно у мест измерения. Например, каждый паровой котел был снабжен своим термометром и манометром. Однако в дальнейшем такие приборы, как правило, заменяли датчиками, преобразующими температуру или давление в электрические сигналы; эти сигналы можно было легко передать на расстояние. Теперь оператор смотрит на щит, где собраны приборы, показывающие температуру, давление, скорость вращения турбины и т. д., и не должен обходить по очереди все агрегаты. Фактически, живые организмы выработали такую прогрессивную систему измерения разных величин за сотни миллионов лет до возникновения техники. Роль щита, на который поступают все сигналы, играет при этом мозг.

Разнообразные рецепторы естественно классифицировать по типам воспринимаемых ими внешних воздействий. Например, такие разные рецепторы, как рецепторы органа слуха, рецепторы органа равновесия, рецепторы, обеспечивающие осязание, реагируют на внешние воздействия одного и того же типа - механические. С этой точки зрения можно выделить следующие типы рецепторов.

1) Фоторецепторы, клетки, реагирующие на электромагнитные волны, частота которых лежит в определенном диапазоне.

2) Механорецепторы, клетки, реагирующие на смещение их частей друг относительно друга; к механорецепторам, как уже говорилось, относятся и клетки, воспринимающие звуки, т. е. колебания воды и воздуха определенной частоты, и осязательные механорецепторы, и клетки органов боковой линии рыб, воспринимающие движение воды относительно тела рыбы, и клетки, реагирующие на растяжение мышц и сухожилий, и др.

3) Хеморецепторы, клетки, реагирующие на те или иные химические вещества; их деятельность лежит в основе работы органов обоняния и вкуса.

4) Терморецепторы, клетки, воспринимающие температуру.

5) Электрорецепторы, клетки, реагирующие на электрические поля в окружающей среде.

Пожалуй, эти пять типов рецепторов мы поставили бы сегодня на место пяти чувств, описанных Аристотелем.

Давайте рассмотрим теперь для примера один из типов рецепторных клеток - фоторецепторы.

Фоторецепторы

Фоторецепторы сетчатки позвоночных - это палочки и колбочки. Еще в 1866 г. немецкий анатом М. Шульц обнаружил, что у дневных птиц в сетчатке в основном находятся колбочки, а у ночных птиц - палочки. Он сделал вывод, что палочки служат для восприятия слабого света, а колбочки - сильного. Этот вывод подтвердился последующими исследованиями. Сравнение разных животных добавило много аргументов в пользу этой гипотезы: например, у глубоководных рыб с их огромными глазами в сетчатке имеются только палочки.

Посмотрите на рис. 59. На нем изображена палочка позвоночного животного. У нее есть внутренний сегмент и наружный сегмент, соединенные шейкой. В области внутреннего сегмента палочка образует синапсы и выделяет медиатор, действующий на связанные с ней нейроны сетчатки. Медиатор выделяется, как и у других клеток, при деполяризации. Во внешнем сегменте имеются особые образования - диски, в мембрану которых встроены молекулы родопсина. Этот белок и является непосредственным «приёмником» света.

При изучении палочек оказалось, что палочка может быть возбуждена всего одним фотоном света, т. е. обладает максимально возможной чувствительностью. При поглощении одного фотона МП палочки меняется примерно на 1 мВ. Расчеты показывают, что для такого сдвига потенциала надо повлиять примерно на 1 ООО ионных каналов. Как же один фотон может повлиять на столько каналов? Было известно, что фотон, проникая в палочку, захватывается молекулой родопсина и меняет состояние этой молекулы.

Но единственная молекула нисколько не лучше одного фотона. Оставалось совершенно непонятным, как эта молекула ухитряется изменить МП палочки, тем более, что диски с родопсином электрически не связаны с наружной мембраной клетки.

Разгадка работы палочек в основном была найдена за последние несколько лет. Оказалось, что родопсин, поглотив квант света, приобретает на некоторое время свойства катализатора и успевает изменить несколько молекул специального белка, которые вызывают, в свою очередь, другие биохимические реакции. Таким образом, работа палочки объясняется возникновением цепной реакции, которая запускается при поглощении всего одного кванта света и приводит к появлению внутри палочки тысяч молекул вещества, способного влиять на ионные каналы изнутри клетки.

Что же делает этот внутриклеточный медиатор? Оказывается, мембрана внутреннего сегмента палочки достаточно обычна - стандартна по своим свойствам: она содержит К-каналы, создающие ПП. А вот мембрана наружного сегмента необычна: она содержит только Ка-каналы. В покое они открыты, и хотя их не очень много, этого достаточно, чтобы идущий через них ток снижал МП, деполяризуя палочку. Так вот, внутриклеточный медиатор способен закрывать часть Ка-каналов, при этом сопротивление нагрузки растет и МП тоже нарастает, приближаясь к калиевому равновесному потенциалу. В результате палочка при действии на нее света гиперполяризуется.

А теперь на минуту задумайтесь над тем, что вы только что узнали, и вы сильно удивитесь. Оказывается, наши фоторецепторы выделяют больше всего медиатора в темноте, а вот при освещении они выделяют его меньше, и тем меньше, чем ярче свет. Это удивительное открытие было сделано в 1968г. Ю.А. Трифоновым из лаборатории А.Л. Вызова, когда о механизме работы палочек было известно еще мало.

Итак, мы тут встретились еще с одним типом каналов - каналами, управляемыми изнутри клетки.

Если мы сравним фоторецептор позвоночного и беспозвоночного животного, то увидим, что в их работе очень много общего: имеется пигмент типа родопсина; сигнал от возбужденного пигмента передается к наружной мембране с помощью внутриклеточного медиатора; клетка не способна к генерации ПД. Различие же состоит в том, что внутриклеточный медиатор действует у разных организмов на разные ионные каналы: у позвоночных он вызывает гиперполяризацню рецептора, а у беспозвоночных, как правило,- деполяризацию. Например, у морского моллюска - гребешка - при освещении рецепторов дистальной сетчатки возникает их гиперполяризация, как у позвоночных, но механизм ее совершенно другой. У гребешка свет увеличивает проницаемость мембраны к ионам калия и МП сдвигается ближе к равновесному калиевому потенциалу.

Однако знак изменения потенциала фоторецептора не слишком существен, его всегда можно изменить в ходе дальнейшей обработки. Важно лишь, чтобы световой сигнал надежно преобразовывался в электрический.

Давайте рассмотрим для примера дальнейшую судьбу возникшего электрического сигнала в зрительной системе уже знакомых нам усоногих раков. У этих животных фоторецепторы при освещении деполяризуются и выделяют больше медиатора, но это не вызывает никакой реакции животного. Зато при затенении глаз рак принимает меры: убирает усики и т. д. Как же это происходит? Дело в том, что медиатор фоторецепторов усоногих раков тормозной, он гиперполяризует следующую клетку нейронной цепи, и она начинает выделять меньше медиатора, поэтому, когда свет становится ярче, никакой реакции не возникает. Наоборот, при затенении фоторецептора он выделяет меньше медиатора и перестает тормозить клетку второго порядка. Тогда эта клетка деполяризуется и возбуждает свою клетку-мишень, в которой возникают импульсы. Клетка 2 в этой цепи называется И-клеткой, от слова «инвертирующая», так как ее основная роль - менять знак сигнала фоторецептора. Усоногий рак имеет довольно примитивные глаза, да ему и немного надо; он ведет прикрепленный образ жизни и ему достаточно знать, что приближается враг. У других животных система нейронов второго и третьего порядков устроена гораздо сложнее,

В фоторецепторах рецепторный потенциал передается дальше электротонически и влияет на количество выделяющегося медиатора. У позвоночных или усоногих раков и следующая клетка безымпульсная и только третий нейрон цепочки способен к генерации импульсов. А вот в рецепторе растяжения наших мышц ситуация совершенно иная. Этот механорецептор представляет собой окончание нервного волокна, обвивающееся спиралью вокруг мышечного волокна. При растяжении ншпцы витки спирали, образованные безмиелиновой частью волокна, отходят друг от друга и в них возникает Г-цепторный потенциал - деполяризация, обусловленная открыванием Ка-каналов, чувствительных к деформации мембраны; этот потенциал создает ток, идущий через перехват Ранвье того же волокна, и перехват генерирует импульсы. Чем сильнее растянута мышца, тем больше рецепторный потенциал и тем выше частота импульсации.

У этого механорецептора и преобразование внешнего воздействия в электрический сигнал, т. е. в рецепторный потенциал, и преобразование рецепторного потенциала в импульсы реализуется участком одного аксона.

Конечно, нам было бы интересно рассказать об устройстве разных рецепторов разных животных, ведь по своей конструкции и применению они бывают весьма экзотическими; однако каждый такой рассказ в конце концов сводился бы к одному и тому же: как внешний сигнал преобразуется в рецепторный потенциал, который управляет выделением медиатора или вызывает генерацию импульсов.

Но об одном типе рецепторов мы все же еще расскажем. Это электрорецептор. Его особенность состоит в том, что сигнал, на который надо реагировать, уже имеет электрическую природу. Что же делает этот рецептор? Преобразует электрический сигнал в электрический?


Электрорецепторы. Как акулы используют закон Ома и теорию вероятностей

В 1951г. английский ученый Лиссман изучал поведение рыбы гимнарха. Эта рыба обитает в мутной непрозрачной воде в озерах и болотах Африки и поэтому не всегда может для ориентации пользоваться зрением. Лиссман предположил, что эти рыбы, подобно летучим мышам, используют для ориентации эхолокацию.

Удивительная способность летучих мышей летать в полной темноте, не натыкаясь на препятствия, была обнаружена очень давно, в 1793г., т. е. почти одновременно с открытием Гальвани. Это сделал Лазаро Спалланцани - профессор университета в Павии. Однако экспериментальное доказательство того, что летучие мыши издают ультразвуки и ориентируются по их эху, было получено только в 1938 г. в Гарвардском университете в США, когда физики создали аппаратуру для регистрации ультразвука.

Проверив ультразвуковую гипотезу ориентации гимнарха экспериментально, Лиссман отверг ее. Оказалось, что гимнарх ориентируется как-то иначе. Изучая поведение гимнарха, Лиссман выяснил, что эта рыба обладает электрическим органом и в непрозрачной воде начинает генерировать разряды очень слабого тока. Такой ток не пригоден ни для защиты, ни для нападения. Тогда Лиссман предположил, что гимнарх должен обладать специальными органами для восприятия электрических полей - электросенсорной системой.

Это была очень смелая гипотеза. Ученые знали, что насекомые видят ультрафиолет, а многие животные слышат неслышимые для нас звуки. Но это было лишь некоторое расширение диапазона в восприятии сигналов, которые могут воспринимать и люди. Лиссман допустил существование совершенно нового типа рецепторов.

Ситуация осложнялась тем, что реакция рыб на слабые токи в это время была уже известной. Ее наблюдали еще в 1917 г. Паркер и Ван Хойзер на сомике. Однако эти авторы дали своим наблюдениям совсем другое объяснение. Они решили, что при пропускании тока через воду в ней меняется распределение ионов, и это влияет на вкус воды. Такая точка зрения казалась вполне правдоподобной: зачем придумывать какие-то новые органы, если результаты можно объяснить известными обычными органами вкуса. Правда, эти ученые никак не доказывали свою интерпретацию; они не поставили контрольного опыта. Если бы они перерезали нервы, идущие от органов вкуса, так чтобы вкусовые ощущения у рыбы исчезли, то обнаружили бы, что реакция на ток сохраняется. Ограничившись словесным объяснением своих наблюдений, они прошли мимо большого открытия.

Лиссман же, напротив, придумал и поставил множество разнообразных опытов и после десятилетней работы доказал свою гипотезу. Примерно 25 лет назад существование электрорецепторов было признано наукой. Электрорецепторы начали изучать, и вскоре они были обнаружены у многих морских и пресноводных рыб, а также у миног. Примерно 5 лет назад такие рецепторы были открыты у амфибий, а недавно - и у млекопитающих.

Где же расположены электрорецепторы и как они устроены?

У рыб есть механорецепторы боковой линии, расположенные вдоль туловища и на голове рыбы; они воспринимают движение воды относительно животного. Электрорецепторы - это другой тип рецепторов боковой линии. Во время эмбрионального развития все рецепторы боковой линии развиваются из того же участка нервной системы, что и слуховые и вестибулярные рецепторы. Так что слуховые рецепторы летучих мышей и электрорецепторы рыб - близкие родственники.

У разных рыб электрорецепторы имеют разную локализацию - они располагаются на голове, на плавниках, вдоль тела, а также и разное строение. Часто электрорецепторные клетки образуют специализированные органы. Мы рассмотрим тут один из таких органов, встречающихся у акул и у скатов,- ампулу Лоренцини. Лоренцини думал, что ампулы - это железы, вырабатывающие слизь рыбы. Ампула Лоренцини представляет собой подкожный канал, один конец которого открыт в наружную среду, а другой оканчивается глухим расширением; просвет канала заполнен желеобразной массой; электрорецепторные клетки выстилают в один ряд «дно» ампулы.

Интересно, что Паркер, который впервые заметил, что рыбы реагируют на слабые электрические токи, изучал и ампулы Лоренцини,но приписал им совсем другие функции. Он обнаружил, что, надавливая палочкой на наружный вход канала, можно вызвать реакцию акулы. Из таких опытов он сделал вывод, что ампула Лоренцини - это манометр для измерения глубины погружения рыбы, тем более, что по строению орган был похож на манометр. Но и на этот раз интерпретация Паркера оказалась ошибочной. Если акулу поместить в барокамеру и создать в ней повышенное давление, то ампула Лоренцини на него не реагирует - и это можно нт>едвидеть х не ставя эксперимента: вода давит со всех сторон и никакого эффекта нет *). А при давлении только на пору в желе, которое ее заполняет, возникает разность потенциалов, подобно тому, как возникает разность потенциалов в пьезоэлектрическом кристалле.

Как же устроены ампулы Лоренцини? Оказалось, что все клетки эпителия, выстилающего канал, прочно соединены между собой особыми «плотными контактами», что обеспечивает высокое удельное сопротивление эпителия. Канал, покрытый такой хорошей изоляцией, проходит под кожей и может иметь длину в несколько десятков сантиметров. Напротив, желе, заполняющее канал ампулы Лоренцини, имеет очень низкое удельное сопротивление; это обеспечивается тем, что в просвет канала ионные насосы накачивают много ионов К + . Таким образом, канал электрического органа представляет собой отрезок хорошего кабеля с высоким сопротивлением изоляции и хорошо проводящей жилой.

«Дно» ампулы устилают в один слой несколько десятков тысяч электрореценторных клеток, которые тоже плотно склеены между собой. Получается, что рецепторная клетка одним концом смотрит внутрь канала, а на другом конце образует синапс, где выделяет возбуждающий медиатор, действующий на подходящее к ней окончание нервного волокна. К каждой ампуле подходят 10- 20 афферентных волокон и каждое дает много терминалей, идущих к рецепторам, так что в результате на каждое волокно действуют примерно 2 ООО рецепторных клеток.

Посмотрим теперь, что происходит с самими электро-рецепторными клетками под действием электрического поля.

Если любую клетку поместить в электрическом поле, то в одной части мембраны знак ГШ совпадет со знаком напряженности поля, а в другой окажется противоположным. Значит, на одной половине клетки МП возрастет, а на другой, наоборот, снизится. Получается, что всякая клетка «чувствует» электрические поля, т. е. является электрорецептором.

И понятно: ведь в этом случае отпадает проблема преобразования внешнего сигнала в естественный для клетки - электрический. Таким образом, электрорецепторные клетки работают очень просто: при надлежащем знаке внешнего поля деполяризуется синаптическая мембрана этих клеток и этот сдвиг потенциала управляет выделением медиатора.

Но тогда возникает вопрос: в чем особенности электрорецепторных клеток? Может ли выполнять их функции любой нейрон? Чему служит особое устройство ампул Лоренцини?

Да, качественно, любой нейрон может считаться электрорецептором, но если перейти к количественным оценкам, ситуация меняется. Естественные электрические поля очень слабы, и все ухищрения, которые использует природа в электрочувствительных органах, направлены на то, чтобы, во-первых, поймать на синаптической мембране возможно большую разность потенциалов, и, во-вторых, обеспечить высокую чувствительность механизма выделения медиатора к изменению МП.

Электрические органы акул и скатов обладают чрезвычайно высокой чувствительностью: рыбы реагируют на электрические поля напряженностью 0,1 мкВ/см. Так что проблема чувствительности решена в природе блестяще. Как же достигаются такие результаты?

Во-первых, обеспечению такой чувствительности способствует устройство ампулы Лоренцини. Если напряженность поля равна 0,1 мкВ/см, а длина канала ампулы равна 10 см, то на всю ампулу придется разность потенциалов в 1 мкВ. Практически все это напряжение будет падать на слое рецепторов, так как его сопротивление гораздо выше, чем сопротивление среды в канале. Акула тут прямо использует закон Ома: V = 11$, так как ток, текущий в цепи, один и тот же, то падение напряжения больше там, где выше сопротивление. Таким образом, чем длиннее канал ампулы и чем ниже его сопротивление, тем большая разность потенциалов подается на электрорецептор.

Во-вторых, закон Ома «применяют» и сами электрорецепторы; разные участки их мембраны тоже имеют разное сопротивление: синаптическая мембрана, где выделяется медиатор, имеет большое сопротивление, а противоположный участок мембраны - маленькое, так что и тут разность потенциалов распределяется возможно выгоднее,

Что же касается чувствительности синаптической мембраны к сдвигам МП, то она может объясняться разными причинами: высокой чувствительностью к сдвигу потенциала могут обладать Са-каналы этой мембраны либо сам механизм выброса медиатора. Очень интересный вариант объяснения высокой чувствительности выделения медиатора к сдвигам МП предложил А.Л. Вызов. Его идея состоит в том, что в таких синапсах ток, генерируемый постсинаптической мембраной, затекает в рецепторные клетки и способствует выделению медиатора; в результате возникает положительная обратная связь: выделение медиатора вызывает ПСП, при этом через синапс течет ток, а это усиливает выделение медиатора. В принципе, такой механизм обязательно должен действовать. Но и в этом случае вопрос является количественным: насколько эффективным является такой механизм, чтобы играть какую-то функциональную роль? В последнее время А.Л. Вызову и его сотрудникам удалось получить убедительные экспериментальные данные, подтверждающие, что такой механизм действительно работает в фоторецепторах.

Борьба с шумами

Итак, за счет разных ухищрений с использованием закона Ома на мембране электрорецепторов создается сдвиг потенциала порядка 1 мкВ. Казалось бы, что если чувствительность пресинаптической мембраны достаточно высока - а это, как мы видели, действительно так и есть,- то все в порядке. Но мы не учли, что повышение чувствительности всякого прибора вызывает новую проблему - проблему борьбы с шумами. Мы называли чувствительность электрорецептора, воспринимающего 1 мкВ, фантастической и теперь поясним, почему. Дело в том, что эта величина гораздо ниже уровня шумов.

В любом проводнике носители зарядов участвуют в тепловом движении, т. е. хаотически движутся в разных направлениях. Иногда больше зарядов движется в одном направлении, чем в другом, а это означает, что в любом проводнике без всякого источника э. д. с. возникают токи. Применительно к металлам эта проблема была рассмотрена еще в 1913 г. де-Гаазом и Лоренцем. Экспериментально тепловые шумы в проводниках были обнаружены в 1927 г., Джонсоном. В том же году Г. Найквист дал детальную и общую теорию этого явления. Теория и эксперимент хорошо согласовывались: было показано, что интенсивность шума линейно зависит от величины сопротивления и от температуры проводника. Это естественно: чем больше сопротивление проводника, тем больше разность потенциалов, которая на нем появляется за счет случайно возникающих токов, а чем выше температура, тем больше скорость движения носителей зарядов. Таким образом, чем больше сопротивление проводника, тем большие колебания потенциала возникают в нем под действием теплового движения зарядов.

А теперь вернемся к электрорецепторам. Мы говорили, что для повышения чувствительности в этом рецепторе выгодно иметь возможно более высокое сопротивление мембраны, чтобы на ней падала большая часть напряжения. И действительно, сопротивление мембраны, которая выделяет медиатор, у электрорецепторной клетки очень велико, порядка 10 10 Ом. Однако за все приходится платить: высокое сопротивление этой мембраны ведет к усилению шумов. Колебание потенциала на мембране электрорецентора за счет тепловых шумов равно примерно 30 мкВ, т. е. в 30 раз больше, чем минимальный воспринимаемый сдвиг МП, возникающий под действием внешнего поля! Получается, что дело обстоит так, как будто вы сидите в комнате, где разговаривают каждый о своем три десятка человек, и пытаетесь вести разговор с одним из них. Если громкость всех шумов будет в 30 раз выше, чем громкость вашего голоса, то беседа будет, конечно, невозможна.

Как же акула «слышит» такой разговор сквозь тепловые шумы? Не имеем ли мы дело с чудом? Конечно, нет. Мы просили вас обратить внимание на то, что на одно воспринимающее волокно действуют синапсы примерно 2 ООО электрорецепторов. Под действием тепловых шумов в мембране то из одного, то из другого синапса выделяется медиатор и аффрентное волокно даже в отсутствие электрических полей вне рыбы все время импульсирует. При появлении внешнего сигнала все 2 ООО клеток выделяют медиатор, В результате этого и усиливается внешний сигнал.

Подождите, скажет думающий читатель, ведь 2 000 клеток и шуметь должны сильнее! Выходит, если продолжить аналогию с разговором в шумной комнате, что 100 человек легче перекричат трехтысячную толпу, чем один - тридцать? Но, оказывается, в действительности, как ни странно, так оно и есть. Наверно, каждый из нас не раз слышал, как сквозь бурю аплодисментов пробиваются ритмичные, все усиливающиеся хлопки. Или сквозь рев трибун стадиона отчетливо слышны возгласы: «Молодцы! Молодцы!», скандируемые даже не очень многочисленной группой болельщиков. Дело в том, что во всех этих случаях мы встречаемся с противоборством сигнала организованного, синхронного, с шумом, т. е. сигналом хаотическим. Грубо говоря, возвращаясь к электрорецепторам, их реакции на внешний сигнал синхронны и складываются, а из случайных тепловых шумов совпадает во времени только какая-то часть. Поэтому амплитуда сигнала растет прямо пропорционально числу рецепторных клеток, а амплитуда шума - значительно медленнее. Но позвольте, опять может вмешаться читатель, если шум в рецепторе всего в 30 раз сильнее сигнала, не слишком" ли расточительна природа? Зачем 2 000 рецепторов? Может, хватило бы и ста?

Когда речь заходит о количественных проблемах, нужно считать, а значит, нужна математика. В математике есть специальный раздел - теория вероятностей, в котором изучаются случайные явления и процессы самой разной природы. К сожалению, с этим разделом математики совсем не знакомят в общеобразовательной школе.

А теперь проведем простой расчет. Пусть внешнее поле сдвинуло МП всех рецепторов на 1 мкВ, Тогда общий полезный сигнал всех рецепторов будет равен 2 ООО неких единиц. Среднее значение шумового сигнала одного рецептора примерно 30 мкВ, но общий шумовой сигнал пропорционален 2000, т. е. равен всего 1350 единицам. Мы видим, что за счет суммации эффекта от большого числа рецепторов полезный сигнал в 1,5 раза превышает шум. Видно, что сотней рецепторных клеток обойтись нельзя. А при отношении сигнала к шуму равном 1,5, нервная система акулы уже способна этот сигнал обнаружить, так что никакого чуда не происходит.

Мы говорили, что палочки сетчатки реагируют на возбуждение всего одной молекулы родопсина. Но такое возбуждение может возникнуть не только под действием света, но и под действием тепловых шумов. В результате высокой чувствительности палочек в сетчатке должны все время возникать сигналы «ложной тревоги». Однако в действительности и в сетчатке имеется система борьбы с шумами, основанная на том же принципе. Палочки связаны между собой ЭС, что ведет к усреднению сдвигов их потенциала, так что все происходит так же, как в электрорецепторах. А еще вспомните объединение через высокопроницаемые контакты спонтанно активных клеток синусного узла сердца, дающее регулярный сердечный ритм и устраняющее колебания, присущие одиночной клетке. Мы видим, что природа широко использует усреднение для борьбы с шумами в разных ситуациях.

Как же животные используют свои электрорецепторы? О способе ориентации рыб в мутной воде мы подробнее поговорим в дальнейшем. А вот акулы и скаты используют свои электрорецепторы при поисках добычи. Эти хищники способны обнаружить скрытую под слоем песка камбалу только по электрическим полям, генерируемым ее мышцами при дыхательных движениях. Эта способность акул была показана в серии красивых опытов, выполненных Келмином в 1971 г, Животное может затаиться и не двигаться, может маскироваться под цвет фона, но оно не может прекратить обмен веществ, остановить работу сердца, перестать дышать, поэтому его всегда демаскируют запахи, а в воде - и электрические поля, возникающие при работе сердца и других мышц. Так что многих хищных рыб можно назвать «электроищейками».

... ; антитела же lgG4, IgA, IgD и IgE не активируют комплемент. К зффекторным функциям иммуноглобулинов относится также их избирательное взаимодействие с различными типами клеток при участии специальных рецепторов клеточной поверхности. КЛЕТОЧНЫЕ РЕЦЕПТОРЫ ДЛЯ АНТИТЕЛ Существует три типа рецепторов клеточной поверхности для IgG Клеточные рецепторы для IgG опосредуют ряд эффекторных функций...