Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Абсолютная скорость движения ионов. Движение ионов в электролитах

Абсолютная скорость движения ионов. Движение ионов в электролитах

Растворы электролитов. Теория электрической диссоциации.

Электролиты – вещества, которые в растворе или расплаве полностью или частично состоят из ионов. Данные вещества способны проводить электрический ток.

Теория Аринуса:1) При растворении в воде молекулы электролитов распадаются на катионы и анионы, что приводит изменению энергии Гиббса. . 2)Процесс диссоциации обратим, т.е. в растворе существует равновесие. А при разбавлении возможна полная диссоциация. . 3)Сумма катионов равна сумме анионов. 4)Растворы ведут себя, как идеальные газы (истинно только для растворов слабых электролитов).

Для количественной характеристики электролитов была введена степень диссоциации: - число продиссоциированных молекул; - общее число молекул в растворе; По степени диссоциации различают сильные ( =1, диссоциация проходит полностью) и слабые ( электролиты.

Характеристикой слабых электролитов является константа диссоциации:

Связь между и описывает закон разбавления Осфальда: . Растворы электролитов значительно отличаются от идеальных растворов тем, что происходит увеличение частиц в результате диссоциации.

Изотонический коэффициент – отношение фактического числа частиц в растворе, к тому, которое было бы без диссоциации. Связь между и : K – суммарное число ионов, образующихся в процессе диссоциации 1 молекулы электролита.

Сильные электролиты.

ü В растворах полностью диссоциируют на ионы;

ü Между ионами существует электростатическое взаимодействие – каждый ион окружён обратно заряженными ионами, так называемой ионной атмосферой.

Для растворов сильных электролитов используют активности, а не концентрации.

Коэффициент активности () – мера отличия свойств растворов электролитов от свойств идеальных растворов.

Для сильных электролитов нужно учитывать силы электростатического взаимодействия между ионами, т.к. происходит уменьшение скорости движения ионов из-за двух эффектов: 1)Катоффетический – торможение ионов при движении из-за наличия ионной атмосферы. 2)Релаксационный – разрушение старой ионной атмосферы и образование новой.

Механизм движения ионов. Абсолютная скорость ионов.

Для включения электрического поля ионы хаотично движутся,а при наложении поля одно из направлений преобладает,и движение от А к К.По мере увеличения скор.движения возрастает сопротивление среды,оно больше,чем больше вязкость среды и радиус иона.Абсолютная скорость движения ионов равна скорости движения иона при напряжённости электрич.поля = 1 вольт/м2.По мере уменьш. концентрации возрастает число ионов в р-ре.

Движение ионов возникает из-за: 1) неодинакового распределения ионов по обе стороны мембраны; 2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов.

Движение ионов в электролитах в некоторых случаях может быть показано весьма наглядно.

Пропитаем листок фильтровальной бумаги раствором электролита (сернокислого натра, ) и фенолфталеина и поместим на стеклянную пластинку (рис. 107). Поперек бумаги положим обыкновенную белую нитку, смоченную раствором едкого натра (NaOH). Бумага под ниткой окрасится в малиновый цвет благодаря взаимодействию ионов гидроксила (ОН) из NaOH с фенолфталеином. Затем прижмем к краям листка проволочные электроды, присоединенные к гальваническому элементу, и включим ток. Ионы гидроксила из едкого натра начнут двигаться к аноду, окрашивая бумагу в малиновый цвет. По скорости перемещения малинового края можно судить о средней скорости движения ионов под влиянием электрического поля внутри электролита. Опыт показывает, что эта скорость пропорциональна напряженности поля внутри электролита. При заданном поле эта скорость для разных ионов несколько различна. Но в общем она невелика и для обычно применяющихся полей измеряется сотыми и даже тысячными долями сантиметра в секунду.

Рис. 107. Опыт, показывающий движение ионов. Листок фильтровальной бумаги пропитан раствором электролита и фенолфталеина, – нитка, смоченная раствором электролита

68.1. Для определения знака полюсов источника употребляют «полюсоискатели», представляющие собой небольшую стеклянную ампулу с двумя введенными в нее проволоками (рис. 108). Ампула

заполняется раствором поваренной соли с добавленным к нему фенолфталеином, краснеющим под действием щелочи. На каком из полюсов будет появляться красная окраска?

Рис. 108. К упражнению 68.1

Ионные электропроводности (подвижности) – получают умножением абсолютных скоростей ионов v + и v _ на число Фарадея: для катиона  + = v + *F и аниона:  - = v - *F.

Примеры решения задач

Пример 1.

Вычислить ЭДС соответствующего гальванического элемента, константу равновесия окислительно-восстановительной реакции и определить наиболее вероятное направление самопроизвольного протекания реакции:

Сd 0 (тв) + Аg + (p)  Сd 2+ (p) + Аg 0 (тв),

еcли концентрации ионов равны:

С А g + = 10  4 моль/л; C С d 2+ = 10  3 моль/л.

Решение:

Вычислим электродные потенциалы соответствующих электродов по формуле Нернста:

Е 1 = Е 0 1 +  lg С С d 2+ ;

Стандартный электродный потенциал кадмия составляет – 0,40 В.

Е 1 =  0,40 +  lg 10  3 =  0,49 В;

Для серебра стандартный потенциал равен +0,80 В, тогда:

Е 2 = Е 0 2 +  lg С А g +

Е 2 = 0,80 +  lg 10  4 =+ 0,56 В.

Поскольку Е 1  Е 2 , реакция будет протекать слева направо, т. е.

Сd 0 (тв) + 2Аg + (p)  Сd 2+ (p) + 2Аg 0 (тв)

Запишем схему гальванического элемента:

 Сd 0  Сd 2+ Аg +  Аg 0 +,

Сd 0  2е  Сd 2+  на аноде происходит процесс окисления;

Аg + + е  Аg 0  на катоде происходит процесс восстановления.

ЭДС такого элемента будет равна:

ЭДС = Е 2  Е 1

ЭДС = 0,56  (0,49) = 1,05 В.

Для вычисления константы равновесия, вспомним связь между стан­дартной ЭДС и стандартной энергией Гиббса: G =  nFE.

С другой стороны, G связана с константой равновесия K уравне­нием G =  2,3 RT lg K. Для 25°С (298 К) последнее уравнение после подстановки в него значений R (8,31 Дж/моль K) и F (96485 Кл/экв) преобразуется к такому виду (Е = Е 2  Е 1):

lg K =  ;

2  (0,8 – (– 0,4)) 2  1,2

lg K =  =  = 35,6.

Отсюда K = 10 35,6 .

Из этого следует, что реакция между кадмием и ионами серебра практически протекает в сторону продуктов реакции.

Пример 2.

Ток в 2,5 А, проходя через раствор электролита в течение 30 мин, выделяет из раствора 2,77 г металла. Найти эквива­лентную массу металла.

Решение:

Согласно закону Фарадея:

m = (ЭI)/F.

Тогда Э = (m F)/ I; Э = (2,77 96485)/(2,5  З0  60) = 59,4 г/моль.

Пример 3.

Какой из металлов: кадмий, медь, платина, молибден, ртуть  в паре с никелем в гальваническом элементе будет анодом? Составьте схему гальванического элемента.

Решение:

Запишем значения стандартных электродных потенциалов для данных металлов:

Е Cd  Cd +2 =  0,40 В; Е Mo  Mo +2 =  0,20 В;

Е Cu  Cu +2 = + 0,34 В; Е Pt  Pt +2 = + 1,20 В;

Е Ni  Ni +2 =  0,25 В.

При работе гальванического элемента электрохимическая система с более высоким значением электродного потенциала восстанавливается, выступая в качестве окислителя, а с более низким – окисляется, являясь восстановителем.

Электрод, на котором в ходе реакции происходит процесс окисления, называется анодом. Поэтому Е АНОД  Е КАТОД. Сравнивая значения электродных потенциалов металлов со значением Е Ni  Ni ++ , получаем Е Cd  Cd +2  Е Ni  Ni +2 . Следовательно, анодом в паре с никелем в гальваническом элементе будет кадмий.

Схема гальванического элемента записывается следующим образом:

Cd Cd 2+  Ni 2+  Ni.

Пример 4.

В контакте с каким из металлов: платина, никель, железо, хром  коррозия цинка будет проходить быстрее и почему?

Решение:

Коррозия – самопроизвольный процесс, и для него G =  nFЕ, поэтому, чем больше значение ЭДС, тем больше вероятность протекания коррозии.

Е = Е Pt  Pt +2  Е Zn  Zn +2 = 1,2  (0,76) = 1,98 B;

Е = Е Ni  Ni +2  Е Zn  Zn +2 = 0,25  (0,76) = 0,51 B;

Е = Е Fe  Fe +2  Е Zn  Zn +2 = 0,44  (0,76) = 0,32 B;

Е = Е Cr  Cr +3  Е Zn  Zn +2 = 0,74  (0,76) = 0,02 B.

Поэтому в контакте с платиной коррозия цинка протекает быстрее.

Пример 5.

Какое вещество выделяется у катода и анода при электролизе водного раствора смеси солей: CuSO 4 ; NaNO 3 ; K 2 SO 4 . Концентрация всех солей в растворе одинаковы.

Решение:

Если система, в которой проводят электролиз, содержит различные окислители, то на катоде будет восстанавливаться наиболее активный из них, т.е. окисленная форма той электрохимической системы, которой отвечает наибольшее значение электродного потенциала.

Cu 2+ + 2е - = Cu: Е Cu  Cu +2 = + 0,34 В

2Н + + е - = Н 2: Е Н  Н+ = 0,0 В

К + + е - = К: Е К  К+ =  2,92 В

Na + + е - = Na: Е Na  Na + =  2,71 В

Поскольку Е Cu  Cu +2 обладает наибольшим значением электродного потенциала, то именно медь будет выделяться на катоде. Аналогично, если в системе имеется несколько восстановителей, на аноде будет окисляться наиболее активный из них, т.е. восстановленная форма той электрохимической системы, которая характеризуется наименьшим значением электродного потенциала.

При электролизе водных растворов нитратов, сульфатов на инертном электролизе происходит окисление гидроксид –ионов с образованием кислорода:

4 ОН – = О 2  + 2Н 2 О + 4е - Е 0 = 0,40 В.

Пример 6.

Что произойдет, если в раствор медного купороса CuSO 4 опустить кусок железа?

Решение:

Запишем электродные полуреакции:

Cu 0  Cu 2+ + 2е - Е Cu  Cu +2 = + 0,34 В;

Fe 0  Fe 2+ + 2е - Е Fe  Fe+2 = - 0,44 В;

т.к. Е Cu  Cu +2  Е Fe  Fe +2 , то наиболее предпочтительна первая полуреакция.

Действительно, отрицательное значение стандартного электродного потенциала FeFe 2+ означает, что железо должно окисляться катионами водорода сильнее, чем медь:

Fe + 2Н +  Fe 2+ + Н 2 .

Е Cu  Cu +2 = + 0,34 В показывает, что водород легче окисляется:

Cu 2+ + Н 2  Cu 0 + 2Н + .

Суммируя реакции, получаем: Fe + Cu 2+  Fe 2+ + Cu 0 . Следовательно, полная реакция окисления железа самопроизвольно протекает в указанном направлении, т.е. на поверхности железа осаждается слой металлической меди.

Пример 7

Рассчитайте электрохимический эквивалент кадмия.

Решение:

Электрохимический эквивалент металла рассчитывается по следующей формуле:

Э =  ,

где М – молярная масса элемента; n – валентность; F – число Фарадея.

112,41 г/моль

Э =  = 5,83 * 10 – 4 г/Кл = 0,583 мг/Кл.

2 * 96485 Кл/моль

Пример 8

Вычислить число переноса аниона С1 - в бесконечно разбавленном растворе NaС1 при 25 С, если известны подвижности катиона и аниона в этом растворе:  Na + = 50,1 см 2 /Ом* моль;  Cl - = 76,35 см 2 /Ом*моль.

Решение:

При электролизе через каждый электрод проходят одинаковые количества электричества, но каждый вид ионов переносит неодинаковые доли электричества ввиду различия скоростей ионов.

Числа переноса (t) можно выразить через отноше­ние абсолютной скорости иона к сумме абсолютных скоростей обоих ионов или соответственно через отношение ион­ных электропроводностей, например:

t - = --- = ---

v + + v _  + + _

Подставляем известные данные в формулу:

76,35 см 2 /Ом*моль

t - =  = 0, 60

76,35 см 2 /Ом*моль + 50,1 см 2 /Ом* моль

Все ткани организма пропитаны и омываются биологическими жидкостями, в которых растворены сильные и слабые электролиты. Поэтому такие биологические жидкости как кровь, лимфа, спинномозговая жидкость, слезная жидкость, слюна и т. д. относятся к проводникам второго рода.

Абсолютная скорость движения ионов. В растворах электролитов сольватированные ионы находятся в беспорядочном движении. При наложении электрического поля возникает упорядоченное движение ионов к противоположно заряженным электродам.

Сравнение скоростей движения различных видов ионов производят при градиенте потенциала поля 1 В/м. Для этих условий скорость движения ионов называют абсолютной, обозначают буквой w и выражают в м2 × B–1 × c–1. Абсолютная скорость движения иона –– это расстояние в метрах, которое проходит ион за 1 с при градиенте потенциала 1В/м. Численные значения абсолютных скоростей движения ионов в данном растворителе зависят только от их природы и температуры.

Для оценки способности ионов к перемещению под действием внешнего поля пользуются также количественной характеристикой – подвижность ионов (U). Подвижность иона представляет собой произведение числа Фарадея (F = 96465 B × с × См × моль–1) на абсолютную скорость движения иона и выражается в См × м2 × моль–1:

U = F × w (1)

Значения абсолютных скоростей движения и подвижностей ионов при 250С представлены в таблице 1:

Таблица 1

Катион

м2 × B–1 × c–1

См × м2 × моль–1

Анион

м2 × B–1 × c–1

См × м2 × моль–1

36,3 × 10–8

349,9 × 10–4

OH–

20,6 × 10–8

199,2 × 10–4

4,0 × 10–8

38,7 × 10–4

F–

5,7 × 10–8

55,4 × 10–4

5,2 × 10–8

50,3 × 10–4

Cl–

7,9 × 10–8

76,3 × 10–4

7,6 × 10–8

73,5 × 10–4

Br–

8,1 × 10–8

78,4 × 10–4

8,0 × 10–8

77,5 × 10–4

I–

8,0 × 10–8

76,9 × 10–4

8,0 × 10–8

77,5 × 10–4

7,4 × 10–8

71,5 × 10–4

7,6 × 10–8

73,5 × 10–4

CH3COO–

4,2 × 10–8

40,9 × 10–4

Mg2+

5,5 × 10–8

106,1 × 10–4

7,2 × 10–8

138,6 × 10–4

Al3+

6,5 × 10–8

183,2 × 10–4

8,3 × 10–8

159,6 × 10–4

Из приведенных в табл.1 данных можно усмотреть некоторые закономерности. Во-первых, абсолютная скорость движения катионов растет в пределах одной группы периодической системы элементов с ростом порядкового номера, как это видно из данных для катионов щелочных металлов. Сравнение расположенных в одном периоде и имеющих приблизительно одинаковый размер ионов Na+, Mg2+, Al3+ показывает незначительное увеличение абсолютной скорости движения с увеличением заряда иона. Оба эти факта объясняются явлением сольватации ионов в растворе. Молекулы растворителя группируются вокруг иона и увеличивают его эффективный радиус (который называется гидродинамическим радиусом).

В электрическом поле в растворах электролитов перемещается не свободный ион, а ион с плотно связанной с ним сольватной оболочкой. В силу меньшего размера ион Li+ сильнее притягивает диполи воды и в итоге имеет большую сольватную оболочку, чем ион калия. Следовательно, небольшие ионы имеют больший гидродинамический радиус и характеризуются меньшей абсолютной скоростью движения. Этим же объясняется малое отличие в абсолютной скорости движения ионов Na+, Mg2+, Al3+. С увеличением заряда, естественно, резко возрастает сольватная оболочка и тем самым размер перемещающейся частицы. Это увеличение размера почти полностью компенсирует эффект увеличения заряда.

Обращает также на себя внимание аномально высокая абсолютная скорость движения ионов гидроксония H 3 O + (H + ) и гидроксила OH – . Можно предположить, что ион Н+ должен быть сильно сольватирован, тем не менее он способен быстро передвигаться в растворе. В этом случае нельзя применить гидродинамический довод, поскольку действует так называемый «эстафетный механизм» перемещения ионов гидроксония и гироксила. В цепочке, построенной из молекул воды, заряд может перейти от одного конца цепочки к другому в результате сравнительно небольшого перемещения протонов, образующих водородные связи между молекулами воды, например:

Из приведенной схемы видно, что перемещение электрического заряда происходит без перемещения атомов водорода. Иными словами, вместо одного иона Н+, двигающегося в растворе, существует эффективное движение иона Н+ , включающее образование и разрыв связей вдоль длинной цепочки молекул воды. Аналогичную схему легко изобразить и для перемещения гидроксид-иона.

font-size:13.0pt;line-height:150%">Повышение температуры влияет на абсолютную скорость движения ионов путем дегидратации и уменьшения вязкости среды, что способствует увеличению скорости перемещения ионов.

Удельная электрическая проводимость

Электрическая проводимость (L) –– это способность веществ проводить электрический ток под действием электрического поля. Она представляет собой величину обратную электрическому сопротивлению R:

L = (2)

Единицей электрической проводимости в CИ является сименс (См), и 1 См = 1 Ом–1.

Известно, что R = r https://pandia.ru/text/79/437/images/image007_146.gif" width="20 height=41" height="41">.gif" width="16 height=44" height="44">= æ , то:

L == æ × , (3)

где æ (каппа) – удельная электрическая проводимость (См/м), S – площадь плоских электродов (м2), между которыми заключен раствор,ℓ – расстояние между электродами (м).

Удельной электрической проводимостью называется электрическая проводимость 1м3 раствора, находящегося в однородном электрическом поле при напряженности 1 В/м. Единицей удельной проводимости в CИ служит сименс/метр (См/м). Удельная электрическая проводимость зависит от многих факторов и, прежде всего, от природы электролита, его концентрации и температуры. Изотермы удельной электрической проводимости (рис.1) дают представление о характере зависимости удельной электрической проводимости от природы электролита и его концентрации для 250С (298К). Анализ изотермы позволяет сделать следующие выводы:

1. Удельная электрическая проводимость максимальна для растворов сильных кислот и несколько меньше – сильных оснований, что объясняется полной диссоциацией этих электролитов и высокой подвижностью ионов Н3О+ и ОН–.

2. Наименьшие значения во всем диапазоне концентраций имеет удельная электрическая проводимость растворов слабых электролитов (СН3СООН) в связи с низкой концентрацией ионов (a <<1).

3. Удельная электрическая проводимость растет с увеличением концентрацией до некоторых максимальных значений, что отвечает увеличению количества ионов в единице объема раствора. Достигнув максимума, удельная электрическая проводимость начинает уменьшаться, несмотря на рост концентрации электролита. Подобный характер зависимости æ от С связан у сильных электролитов с уменьшением подвижности ионов из-за возрастающего по мере увеличения концентрации раствора межионного взаимодействия, а у слабых электролитов – с уменьшением степени электролитической диссоциации электролита, а значит, и уменьшением количества ионов в единице объема раствора.

С увеличением температуры удельная электрическая проводимость растет. Это обусловлено, в основном, дегидратацией ионов и уменьшением вязкости среды, т. е. уменьшением сопротивления движению ионов.

Удельная электрическая проводимость растворов зависит от разведения. Разведение величина обратная концентрации. (Разведение обозначается символом V или 1/С и характеризует объем раствора, содержащий 1 моль электролита). Когда разведение мало – раствор концентрирован и степень диссоциации слабого электролита мала. С ростом разведения a сначала увеличивается, а, следовательно, и увеличивается удельная электрическая проводимость. При дальнейшем увеличении разведения степень диссоциации приближается к единице и перестает расти, в то время как общее количество электролита в единице объема уменьшается, что вызовет падение электрической проводимости.

Удельная электрическая проводимость может быть вычислена теоретически:

æ = F × C × a × (w А + w K ) – для слабых электролитов (4)

æ = F × C × fa × (w А + w K ) –для сильных электролитов (5)

где F – число Фарадея, С – концентрация электролита (моль/м3), a – степень диссоциации слабого электролита, fa – коэффициент активности сильного электролита, w А и w K – абсолютная скорость движения аниона и катиона в м/сек при градиенте потенциала 1 В/м.

Молярная электрическая проводимость.

Молярная электрическая проводимость – электрическая проводимость 1 моль электролита, находящегося в растворе между параллельными электродами с расстоянием между ними 1 м и градиенте потенциала 1В/м. Между удельной электрической проводимостью и молярной электрической проводимостью (λm) существует зависимость:

λm = æ/C, (6)

где λm (лямда) – молярная электрическая проводимость, См × м2 × моль–1, æ – удельная электрическая проводимость, См × м–1; С – концентрация электролита в растворе, моль/м3.

Обычно молярная концентрация характеризуется количеством вещества в 1 дм3 (1л), а не в 1м3. В этом случае соотношение имеет вид: