Модные тенденции и тренды. Аксессуары, обувь, красота, прически

Модные тенденции и тренды. Аксессуары, обувь, красота, прически

» » Определение и назначение математического моделирования. Основные понятия математического моделирования

Определение и назначение математического моделирования. Основные понятия математического моделирования

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

Учебное пособие


Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Международный университет бизнеса и новых технологий (институт)

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

для студентов высших учебных заведений.


Бобков С.П. Моделирование систем: учеб. пособие / С.П. Бобков,

Д.О. Бытев; Иван. гос. хим.-технол. ун-т. – Иваново, 2008. – 156 с. - ISBN

Цель учебного пособия – дать студентам общее представление о со- временных методах моделирования технических и технико-экономических систем и объектов.

В пособии рассматриваются общие вопросы и современная методо-

логия моделирования, непрерывные и дискретные детерминированные мо-

дели объектов и систем, стохастические модели с дискретным и непрерыв- ным временем. Большое внимание уделено методам имитационного моде- лирования систем с вероятностными характеристиками. Дается обзор дру- гих подходов к моделированию сложных систем, таких как информацион- но-энтропийный, использование нейронных сетей и сетей Петри.

Учебное пособие предназначено для студентов, обучающихся по специальностям подготовки 080801 «Прикладная информатика» и 230201

«Информационные системы и технологии». Кроме того, пособие может быть полезным для студентов других специальностей и направлений.

Табл.7. Ил.92. Библиогр.:10 назв.

Печатается по решению редакционно-издательского совета Иванов-

ского государственного химико-технологического университета.

Рецензенты:

кафедра прикладной математики Ивановского государственного энергетического университета; доктор физико-математических наук В.А.Соколов, (Ярославский государственный университет).

ISBN 5-9616-0268-6 © ГОУ ВПО Ивановский государст- венный химико-технологический университет», 2008


1.5. Понятие математической схемы моделирования. . . . . . . . . . . . . . 12

1.6. Общая методика создания математических моделей. . . . . . . . . . . 13

1.7. Основные понятия системного подхода к созданию

математических моделей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1. Математические модели технических объектов. . . . . . . . . . . . . . . 20

2.1.1. Компонентные функциональные уравнения объектов. . . . . 20

2.1.2. Фазовые переменные и их аналогии. . . . . . . . . . . . . . . . . . . . 23

2.1.3. Топологические уравнения. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4. Примеры создания моделей технических объектов. . . . . . . 25

2.1.5. Модели технологических аппаратов. . . . . . . . . . . . . . . . . . . 29

2.2. Конечные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1. Понятие конечного автомата. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2. Способы описания и классы конечных автоматов. . . . . . . . 32

2.2.3. Другие виды конечных автоматов. . . . . . . . . . . . . . . . . . . . . 37

3. СТОХАСТИЧЕСКИЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1. Элементы теории марковских случайных процессов. . . . . . . . . . . 39

3.1.1. Понятие случайного процесса. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2. Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3. Стационарное распределение вероятностей. . . . . . . . . . . . . 43

3.1.4. Непрерывные марковские цепи. . . . . . . . . . . . . . . . . . . . . . . 45

3.1.5. Уравнения А.Н. Колмогорова. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.6. Потоки событий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Основы теории массового обслуживания. . . . . . . . . . . . . . . . . . . . . 51

3.2.1. Обобщенная структурная схема СМО. Параметры

и характеристики. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2. Разомкнутые СМО с ожиданием и терпеливыми заявками. 58

3.2.3. Предельные варианты разомкнутой СМО. . . . . . . . . . . . . . . 62

3.2.4.Общий случай разомкнутой СМО. . . . . . . . . . . . . . . . . . . . . . 64

3.2.5. Замкнутые СМО. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.6. Сети массового обслуживания

с простейшими потоками событий. . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3. Вероятностные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77


4. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . .
4.1. Определение метода имитационного моделирования. . . . . . . . . .
4.2. Основные понятия имитационного моделирования. . . . . . . . . . . .
4.3. Основные этапы имитационного моделирования. . . . . . . . . . . . . .
4.4. Время в имитационных моделях. Псевдопараллелизм. . . . . . . . . .
4.5. Обобщённые алгоритмы имитационного моделирования. . . . . . .
4.6. Моделирование случайных факторов. . . . . . . . . . . . . . . . . . . . . . . .
4.6.1. Моделирование базовых случайных величин. . . . . . . . . . . .
4.6.2. Моделирование непрерывных случайных величин
с произвольным распределением. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.3. Моделирование дискретных случайных величин. . . . . . . . .
4.6.4. Моделирование случайных событий и их потоков. . . . . . .
4.7 Моделирование случайных процессов. . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 Непрерывные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . .
4.8. Обработка и анализ результатов имитационного моделирования.
4.8.1. Оценка вероятностных параметров. . . . . . . . . . . . . . . . . . . .
4.8.2. Оценка корреляционных параметров. . . . . . . . . . . . . . . . . . .
4.8.3. Расчет средних по времени параметров СМО. . . . . . . . . . . .
4.9. Планирование экспериментов с имитационными моделями. . . . .
4.10. Общие проблемы имитационного моделирования. . . . . . . . . . . .
5. ОБЗОР АЛЬТЕРНАТИВНЫХ ПОДХОДОВ К МОДЕЛИРОВАНИЮ
СЛОЖНЫХ СИСТЕМ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1. Сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1. Определение сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2. Функционирование сети Петри. . . . . . . . . . . . . . . . . . . . . . . .
5.1.3. Анализ сетей Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2. Нейронные сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1. Понятие нейронной сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2. Искусственный нейрон. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3. Основные виды активационных функций искусственных
нейронов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4. Виды простейших нейронных сетей. . . . . . . . . . . . . . . . . . . .
5.2.5. Рекуррентные и самоорганизующиеся нейронные сети. . .
5.2.6. Общие замечания по использованию нейронных сетей. . . .
5.3. Информационно-энтропийный подход к моделированию систем
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .

ВВЕДЕНИЕ

Моделирование является универсальным методом получения и использо- вания знаний об окружающем мире. Моделирование всегда используется чело- веком в целенаправленной деятельности, особенно в исследовательской. В со- временных условиях усиливается роль и значение математического моделиро- вания, которое с развитием средств вычислительной техники часто стали назы- вать компьютерным.

Математические (компьютерные) модели, в силу своей логичности и строгого формального характера, позволяют выявить основные факторы, опре- деляющие свойства изучаемых систем и исследовать их реакции на внешние воздействия и изменения параметров. Часто математические модели проще и удобнее использовать, чем натуральные (физические). Они позволяют прово- дить вычислительные эксперименты, реальная постановка которых затруднена или невозможна.

Изучение основных принципов математического моделирования является неотъемлемой частью подготовки специалистов в технических областях дея- тельности. Дисциплины, связанные с изучением основных аспектов моделиро- вания объектов и систем в обязательном порядке входят в соответствующие учебные планы, являясь компонентами федеральных образовательных стандар- тов.

Целью данного учебного пособия является последовательное изложение современных методов моделирования. Пособие предназначено главным обра- зом для студентов, обучающихся по специальностям и направлениям «Инфор- мационные системы» и «Прикладная информатика (по отраслям». Однако, учи- тывая опыт преподавания подобных дисциплин в технических вузах, авторы сочли целесообразным не ограничиваться рассмотрением только информаци- онных систем, но и включить в текст рассмотрение технических и технико- экономических систем и объектов.

Материал пособия выстроен следующим образом. В первой главе рас- сматриваются общие вопросы и современная методология моделирования, ис- пользование системного подхода при создании математических моделей. Вто- рая глава посвящена рассмотрению непрерывных и дискретных детерминиро- ванных моделей объектов и систем. Предлагается использование метода анало- гий при синтезе и анализе моделей технических объектов различной физиче- ской природы. В третьей главе изучаются стохастические модели с дискретным и непрерывным временем. Большое внимание в пособии уделено методам ими- тационного моделирования систем с вероятностными характеристиками, что составляет содержание четвертой главы. В пятой главе дается обзор других подходов к моделированию сложных систем, таких как информационно- энтропийный, использование нейронных сетей и сетей Петри.


ОБЩИЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Под математическим моделированием, в узком смысле слова, понимают описание в виде уравнений и неравенств реальных физических, химических, технологических, биологических, экономических и других процессов. Для того чтобы использовать математические методы для анализа и синтеза различных процессов, необходимо уметь описать эти процессы на языке математики, то есть описать в виде системы уравнений и неравенств .

Математические методы выступают как способ получения новых знаний об объекте. Это относится не только к системам. Оглядываясь назад, обращаясь к истории науки, исследователь видит, что всю динамику науки можно рассматривать как непрерывный процесс построения новых, более совершенных и мощных моделей. Укоренилось представление, что «всякое познание является моделированием» (Н.Амосов). Под воздействием общей теории систем произошло переосмысление, переоценка и классических представлений. Понятие математического моделирования стало толковаться настолько расширительно, что включило в себя всю формализацию и математизацию знания. «Математическая модель - это лишь специальный способ описания, позволяющий для анализа использовать формально-логический аппарат математики » (Моисеев Н.Н., 1973).

Но модели сложных и больших систем - это нечто иное принципиально, качественно. Аналитического, формально-логического аппарата здесь уже недостаточно. В рамках этой работы под математической моделью понимается любая математическая конструкция, являющаяся большой и/или сложной динамической системой и обладающая свойством структурно-функционального изоморфизма по отношению к исследуемой системе (системе-оригиналу).

Между моделированием и получением количественного или качественного результата математическими методами существует глубокое различие. Применение математики становится возможным тогда, когда становится ясно, что и с какой целью определять, оценивать, измерять, что и как обрабатывать математическими методами. Модель для этих задач не служит. Математическое моделирование − это не приложение математического инструмента к объекту, не решение конкретных задач математическими средствами. Это построение формальными методами и средствами абстрактного объекта изофункционального исследуемому объекту для последующего приложения математических методов количественного и качественного анализа. В то же время, использование в моделировании математики в качестве языка (метатеории) придает полученным выводам доказательную силу. Деятельность по построению моделей не принадлежит математике и выполняется (должна выполняться) не математиками, а специалистами в конкретной области знания.

Для построения модели системы нужны те содержательные эмпирические представления, те описательные науки, которые предшествуют появлению формализованных наук. Эти описания не входят в виде составных частей в формализованную науку, а лишь облегчают процесс формализации, обогащают эвристические возможности формализации. Модель не требует предварительного описания моделируемого объекта, потому что она сама является формой описания.

Отношение модели и реальности иное, чем отношение реальности и математической формулы. Формула − это иероглиф, знак действительности. Модель − это сама действительность. Можно возразить, что физик или математик отлично чувствует динамику, реальные отношения, которые скрываются за формулой, не воспринимает ее как иероглиф, а, кроме того, современная математика − это далеко не просто и не только формула. И все же, формулами ученый мыслить не может. Иное дело модель. Она обладает динамикой, она живет (не только в переносном, порой и в прямом смысле слова). Исследователь может мыслить моделями, он получает возможность образного мышления. В мире моделей смыкается художественное и логическое восприятие действительности.

Математическое моделирование не исключает использование классической математики, более того, в составе модели математика получает ту силу и всеобщность проникновения, которой была лишена в классическую эпоху.

Если мы рассматриваем некоторый объект как целое, заданное своими внешними свойствами, мы можем эффективно использовать аналитические способы описания для процессов, происходящих вне этого целого. Но стоит поставить задачу внутреннего описания большой и/или сложной системы, описания взаимодействий между ее частями, элементами и подсистемами методами классической математики, как мы немедленно сталкиваемся с непреодолимыми трудностями.

С другой стороны, попытка описать процедурными методами некоторую систему, в общем, не проникая в ее внутреннее устройство, в ее структуру и функции элементов, как правило, не приведет к значимому результату. Каждому методу свое место.

В математике аналитических структур мы должны сначала понять, а потом описать. В моделировании, в математике алгоритмических процессов, сам процесс описания того, что еще не понято, нередко становится средством понимания.

Как методология научных исследований математическое моделирование сочетает в себе опыт различных отраслей науки о природе и обществе, прикладной математики, информатики и системного программирования для решения фундаментальных проблем. Математическое моделирование объектов сложной природы – единый сквозной цикл разработок от фундаментального исследования проблемы до конкретных численных расчетов показателей эффективности объекта. Результатом разработок бывает система математических моделей, которые описывают качественно разнородные закономерности функционирования объекта и его эволюцию в целом как сложной системы в различных условиях. Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений. (В первую очередь это относится к моделированию экономических систем).По своей сути математическое моделирование есть метод решения новых сложных проблем, поэтому исследования по математическому моделированию должны быть опережающими. Следует заранее разрабатывать новые методы, готовить кадры, умеющие со знанием дела применять эти методы для решения новых практических задач.Математическая модель может возникнуть тремя путями: 1. В результате прямого изучения реального процесса. Такие модели называются феноменологическими.2. В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.3. В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей. Процесс моделирования начинается с моделирования упрощенного процесса, который с одной стороны отражает основные качественные явления, с другой стороны допускает достаточно простое математическое описание. По мере углубления исследования строятся новые модели, более детально описывающие явление. Факторы, которые считаются второстепенными на данном этапе, отбрасываются. Однако, на следующих этапах исследования, по мере усложнения модели, они могут быть включены в рассмотрение. В зависимости от цели исследования один и тот же фактор может считаться основным или второстепенным.Математическая модель и реальный процесс не тождественны между собой. Как правило, математическая модель строится с некоторым упрощением и при некоторой идеализации. Она лишь приближенно отражает реальный объект исследования, и результаты исследования реального объекта математическими методами носят приближенный характер. Точность исследования зависит от степени адекватности модели и объекта и от точности применяемых методов вычислительной математики. Схема построения математических моделей следующая: 1. Выделение параметра или функции, подлежащей исследованию.2. Выбор закона, которому подчиняется эта величина.3. Выбор области, в которой требуется изучить данное явление.

Теоретическая дисциплина становится точной наукой, когда она оперирует количественными характеристиками. За качественным описанием модели следует вторая фаза абстрагирования − количественное описание модели. Еще Галилео Галилей сказал, что книга природы написана на языке математики. Иммануил Кант провозгласил, что «во всякой науке столько истины, сколько в ней математики». А Давиду Гильберту принадлежат слова: «Математика основа всего точного естествознания».

Математическое моделирование − это теоретико-экспериментальный метод познавательно-созидательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов − математических моделей.

Под математической моделью принято понимать совокупность соотношений (уравнений, неравенств, логических условий, операторов и т.п.), определяющих характеристики состояний объекта моделирования, а через них и выходные значения – реакции , в зависимости от параметров объекта-оригинала , входных воздействий , начальных и граничных условий, а также времени.

Математическая модель, как правило, учитывает лишь те свойства (атрибуты) объекта-оригинала , которые отражают, определяют и представляют интерес с точки зрения целей и задач конкретного исследования. Следовательно, в зависимости от целей моделирования, при рассмотрении одного и того же объекта-оригинала с различных точек зрения и в различных аспектах, последний может иметь различные математические описания и, как следствие, быть представлен различными математическими моделями.

Принимая во внимание, изложенное выше, дадим наиболее общее, но в то же время строгое конструктивное определение математической модели, сформулированное П.Дж. Коэном.

Определение 4.1. Математическая модель − это формальная система, представляющая собой конечное собрание символов и совершенно строгих правил оперирования этими символами в совокупности с интерпретацией свойств определенного объекта некоторыми отношениями, символами или константами.

Как следует из приведенного определения, конечное собрание символов (алфавит) и совершенно строгих правил оперирования этими символами («грамматика» и «синтаксис» математических выражений) приводят к формированию абстрактных математических объектов (АМО). Только интерпретация делает этот абстрактный объект математической моделью.

Математическая модель представляет собой количест-венную формализацию абстрактных представлений об изучаемом явлении или объекте.

Математические модели могут быть представлены различны­ми математическими средствами:

· действительными или комплексными величинами;

· векторами, матрицами;

· геометрическими образами;

· не­равенствами;

· функциями и функционалами;

· множествами, различными уравнениями;

· функциями распределения вероятностей, статистиками и т.д.

«В физической науке писал Томпсон, при изучении любого объекта первый и наиболее существенный шаг состоит в том, чтобы найти принципы численной оценки и практические методы из­мерения некоторого количества, присущего этому объекту».

Переход от первой ко второй фазе абстрагирования, т.е. от физической модели к математической часто освобождает модель от специфических черт, присущих данному изучаемому явлению или объ­екту. Очень многие математические модели, лишившись физической или технической оболочки, приобретают универсальность, т.е. спо­собность количественного описания различных по своей физической природе процессов или по техническому назначению объектов. В этом проявляется одно из важнейших свойств математической форма­лизации предмета исследования, благодаря которому при постановке и решении прикладных задач в большинстве случаев не требуется создавать новый математический аппарат, а можно воспользоваться существующим, с необходимыми для конкретной ситуации усовершенс­твованием и интерпретацией. Таким образом, одна математическая модель может быть использована для решения большого числа част­ных, конкретных задач и в этом смысле она выражает одно из глав­ных практических назначений теории.

Конечно, построение физической модели часто неразрывно свя­зано с построением математической модели и оба этих процесса представляют две стороны единого процесса абстрагирования.

Нас окружают сложные технические объекты (технические системы), созданные человеком . В процессе проектирования новой или модернизации существующей технической системы решаются задачи расчета параметров и исследования процессов в этой системе. При проведении многовариантных расчетов реальную систему заменяют моделью. В широком смысле модель определяют как отражение наиболее существенных свойств объекта.

Определение 4 .2 . Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя (инженера).

Модель может быть представлена различными способами.

Формы представления модели

· инвариантная − запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;

· аналитическая − запись модели в виде результата аналитического решения исходных уравнений модели;

· алгоритмическая − запись соотношений модели и выбранного численного метода решения в форме алгоритм;

· схемная (графическая) − представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);

· физическая;

· аналоговая;

Математическое моделирование является наиболее универсальным описанием процессов.

В понятие математического моделирования иногда включают и процесс решения задачи на ЭВМ (что в принципе не совсем верно, так как решение задачи на ЭВМ предусматривает кроме всего прочего создание алгоритмической и программной модели, реализующей вычисление в соответствии с математической моделью).

Определение 4.3. ММ− это образ исследуемого объекта, создаваемый в уме субъекта-исследователя с помощью определенных формальных (математических) систем с целью изучения (оценки) определенных свойств данного объекта.

Пусть некоторый объект Q обладает некоторым интересующим нас свойством C 0 .

Для получения математической модели, описывающей данное свойство необходимо:

1. Определить показатель данного свойства (т.е. определить меру свойства в некоторой системе измерения ).

2. Установить перечень свойств С 1 , ..., С m, с которыми свойство С 0 связано некоторыми отношениями (это могут быть внутренние свойства объекта и свойства внешней среды, влияющие на объект).

3. Описать в избранной форматной системе свойства внешней среды, как внешние факторы х 1 , ..., х n , влияющие на искомый показатель Y , внутренние свойства объекта, как параметры z 1 , ..., z r , а неучтенные свойства отнести к группе неучитываемых факторов .

4. Выяснить, если это возможно, закономерные отношения между Y и всеми учитываемыми факторами и параметрами, и составить математическое описание (модель ).

Реальный объект характеризуется следующим функциональным отношением между показателями его свойств:

Однако в модели отображаются только те факторы и параметры оригинального объекта, которые имеют существенное значение для решения исследуемой проблемы. Кроме того, измерения существенных факторов и параметров практически всегда содержат ошибки, вызываемые неточностью измерительных приборов и незнанием некоторых факторов. В силу этого ММ является только приближенным описанием свойств изучаемого объекта.

Математическую модель можно определить еще и как абстракцию изучаемой реальной сущности .

Модели обычно отличаются от оригиналов по природе своих внутренних параметров. Подобие заключается в адекватности реакции Y модели и оригинала на изменение внешних факторов . Поэтому в общем случае математическая модель представляет собой функцию

где - внутренние параметры модели, адекватные параметрам оригинала.

В зависимости от применяемых методов математического описания изучаемых объектов (явлений, процессов) ММ бывают аналитические, логические, графические, автоматные и т.д.

Главным вопросом математического моделирования является вопрос о том, как точно составленная ММ отражает отношения между учитываемыми факторами, параметрами и показателем Y оцениваемого свойства реального объекта, т.е. на сколько точно уравнение (4.2) соответствует уравнению (4.1). Иногда уравнение (4.2) может быть получено сразу в явном виде, например, в виде системы дифференциальных уравнений, или в виде иных явных математических соотношений.

В более сложных случаях вид уравнения (4.2) неизвестен и задача исследователя состоит, прежде всего, в том, чтобы найти это уравнение. При этом к числу варьируемых параметров , относят все учитываемые внешние факторы и параметры исследуемого объекта, а к числу искомых параметров относят внутренние параметры модели , связывающие факторы , с показателем Y " наиболее правдоподобным отношением. Решением этой проблемы занимается теория эксперимента. Суть этой теории состоит в том, чтобы, основываясь на выборочных измерениях значений параметров , и показателя Y ", найти параметры , при которых функция (4.2) наиболее точно отражает реальную закономерность (4.1).

Лекция № 1

Введение. Понятие математических моделей и методов

Раздел 1. Введение

2. Методы построения математических моделей. Понятие о системном подходе. 1

3. Основные понятия математического моделирования экономических систем.. 4

4. Методы аналитического, имитационного и натурного моделирования. 5

Контрольные вопросы.. 6

1. Содержание, цели и задачи дисциплины «Методы моделирования»

Настоящая дисциплина посвящена изучению методов моделирования и практическому применению полученных знаний. Целью дисциплины является обучение студентов общим вопросам теории моделирования, методам построения математических моделей и формального описания процессов и объектов, применению математических моделей для проведения вычислительных экспериментов и решения оптимизационных задач, с использованием современных вычислительных средств.

В задачи дисциплины входит:

Ознакомить студентов с основными понятиями теории математического моделирования, теории систем, теории подобия, теории планирования эксперимента и обработки экспериментальных данных, используемых для построения математических моделей,

Дать студентам навыки в области постановки задачи моделирования, математического описания объектов /процессов/, численных методов реализации математических моделей на ЭВМ и решения оптимизационных задач.

В результате изучения дисциплины студент должен освоить методы математического моделирования процессов и объектов от постановки задачи до реализации математических моделей на ЭВМ и оформления результатов исследования моделей.

Курс дисциплины рассчитан на 12 лекций и 12 практических работ. В результате изучения дисциплины студент должен освоить методы математического моделирования от постановки задачи до реализации математических моделей на ЭВМ

2. Методы построения математических моделей. Понятие о системном подходе

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

4. Методы аналитического, имитационного и натурного моделирования

Моделирование представляет собой мощный метод научного познания, при использовании которого исследуемый объект заменяется более простым объектом, называемым моделью. Основными разновидностями процесса моделирования можно считать два его вида - математическое и физическое моделирование. При физическом (натурном) моделировании исследуемая система заменяется соответствующей ей другой материальной системой, которая воспроизводит свойства изучаемой системы с сохранением их физической природы. Примером этого вида моделирования может служить пилотная сеть, с помощью которой изучается принципиальная возможность построения сети на основе тех или иных компьютеров, коммуникационных устройств, операционных систем и приложений.

Возможности физического моделирования довольно ограничены. Оно позволяет решать отдельные задачи при задании небольшого количества сочетаний исследуемых параметров системы. Действительно, при натурном моделировании вычислительной сети практически невозможно проверить ее работу для вариантов с использованием различных типов коммуникационных устройств - маршрутизаторов, коммутаторов и т. п. Проверка на практике около десятка разных типов маршрутизатров связана не только с большими усилиями и временными затратами, но и с немалыми материальными затратами.

Но даже и в тех случаях, когда при оптимизации сети изменяются не типы устройств и операционных систем, а только их параметры, проведение экспериментов в реальном масштабе времени для огромного количества всевозможных сочетаний этих параметров практичеки невозможно за обозримое время. Даже простое изменение максимального размера пакета в каком-либо протоколе требует переконфигурирования операционной системы в сотнях компьютеров сети, что требует от администратора сети проведения очень большой работы.

Поэтому, при оптимизации сетей во многих случаях предпочтительным оказывается использование математического моделирования. Математическая модель представляет собой совокупность соотношений (формул, уравнений, неравенств, логических условий), определяющих процесс изменения состояния системы в зависимости от ее параметров, входных сигналов, начальных условий и времени.

Особым классом математических моделей являются имитационные модели. Такие модели представляют собой компьютерную программу, которая шаг за шагом воспроизводит события, происходящие в реальной системе. Применительно к вычислительным сетям их имитационные модели воспроизводят процессы генерации сообщений приложениями, разбиение сообщений на пакеты и кадры определенных протоколов, задержки, связанные с обработкой сообщений, пакетов и кадров внутри операционной системы, процесс получения доступа компьютером к разделяемой сетевой среде, процесс обработки поступающих пакетов маршрутизатором и т. д. При имитационном моделировании сети не требуется приобретать дорогостоящее оборудование - его работы имитируется программами, достаточно точно воспроизводящими все основные особенности и параметры такого оборудования.

Преимуществом имитационных моделей является возможность подмены процесса смены событий в исследуемой системе в реальном масштабе времени на ускоренный процесс смены событий в темпе работы программы. В результате за несколько минут можно воспроизвести работу сети в течение нескольких дней, что дает возможность оценить работу сети в широком диапазоне варьируемых параметров.

Результатом работы имитационной модели являются собранные в ходе наблюдения за протекающими событиями статистические данные о наиболее важных характеристиках сети: временах реакции, коэффициентах использования каналов и узлов, вероятности потерь пакетов и т. п.

Существуют специальные языки имитационного моделирования, которые облегчают процесс создания программной модели по сравнению с использованием универсальных языков программирования. Примерами языков имитационного моделирования могут служить такие языки, как SIMULA, GPSS, SIMDIS.

Существуют также системы имитационного моделирования, которые ориентируются на узкий класс изучаемых систем и позволяют строить модели без программирования.

Контрольные вопросы

Сформулируйте определение процесса моделирования. Что такое модель? Свойства моделирования. Сформулируйте основные этапы построения модели классическим методом. Сформулируйте основные этапы построения модели при системном подходе. Назовите функции моделей. Каковы этапы процесса решения экономических задач? Основные разновидности процесса моделирования.

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос - это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые - на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше - множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, используются для описания большой системы. Математическое заключение - это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых - приведенные в таблице ниже.

Универсальность

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Адекватность

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Точность

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Экономичность

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

В этом разделе кратко осветим вопрос Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель - это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи - максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р - это прибыль за единицу, х - это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб - обитатели северных морей;
  • 20% улова - обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х - это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.